

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Branch: Information Science and Engineering

Course Code: 19IS3PCDLD

Course: DIGITAL LOGIC DESIGN

Semester: III

Duration: 3 hrs.

Max Marks: 100

Date: 22.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may suitably assumed.

UNIT - I

1 a) Design a combinational logic circuit to output the 2's complement of a 4-bit binary number. **06**
 i) Construct the truth-table
 ii) Simplify each output function using K-map and write reduced equations
 iii) Draw the resulting logic diagram.

b) Simplify the following Boolean function by using Quine-McCluskey method **08**
 $F(A, B, C, D) = \sum m(0, 2, 3, 6, 7, 8, 10, 12, 13)$

c) Simplify using K-Map. Write the Boolean equation and realize using NAND gates. **06**
 $F(W, X, Y, Z) = \sum m(0, 2, 4, 6, 8) + \sum d(10, 11, 12, 13, 14, 15)$

UNIT - II

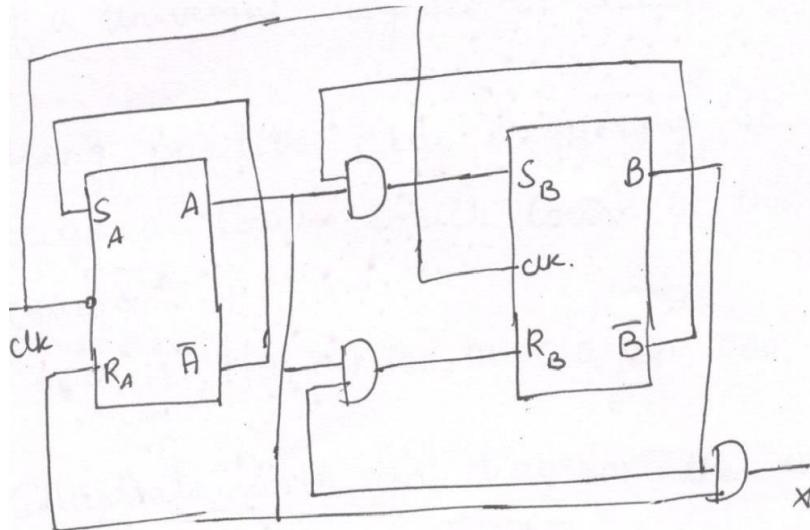
2 a) Implement the following Boolean function with an 8:1 MUX with a, b and d connected to selection lines S2, S1, S0 respectively **05**
 $F(A, B, C, D) = \sum m(0, 1, 3, 4, 8, 9, 15)$

b) Design a 2-bit comparator along with the truth-table and logic diagram **05**

c) Implement the following functions using 3X4X2 PLA. **06**
 $f1(a, b, c) = \sum m(1, 2, 3, 7) \quad f2(a, b, c) = \sum m(1, 5, 7)$

d) Implement the given function using a 3-to-8-line decoder. Minimize the total number of input terminals **04**
 $f1(x_2, x_1, x_0) = \sum m(0, 1, 5, 6, 7) \quad f2(x_2, x_1, x_0) = \sum m(1, 5, 7)$

UNIT - III


3 a) Along with the truth-table and logic diagram, explain the working principle of
 i) Clocked SR Flip-Flop ii) Clocked JK Flip-Flop iii) Clocked D Flip-Flop **08**

b) Derive the characteristic equations for
 i) SR Flip-Flop ii) JK Flip-Flop iii) D Flip-Flop iv) T Flip-Flop **12**

OR

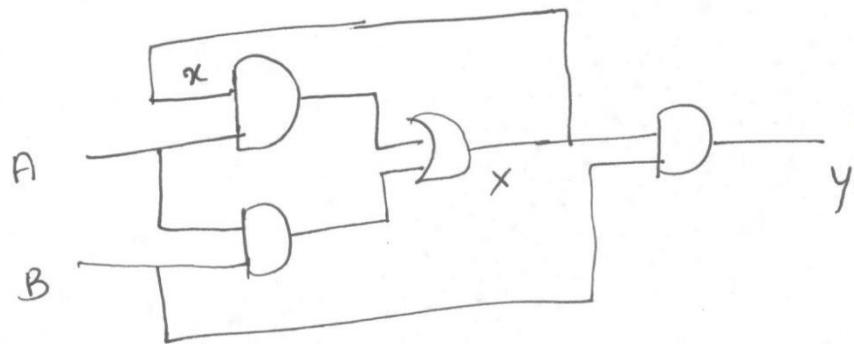
4 a) Design a master-slave JK flip-flop. Draw the logic diagram and explain its working along with truth-table. **10**

b) Analyze the given sequential circuit along with state synthesis table and state transition Diagram. **10**

UNIT - IV

5 a) With a neat diagram, explain the working of a universal shift register. **10**

b) Using positive edge triggered SR flip-flops, design a counter which counts in the following sequence **10**

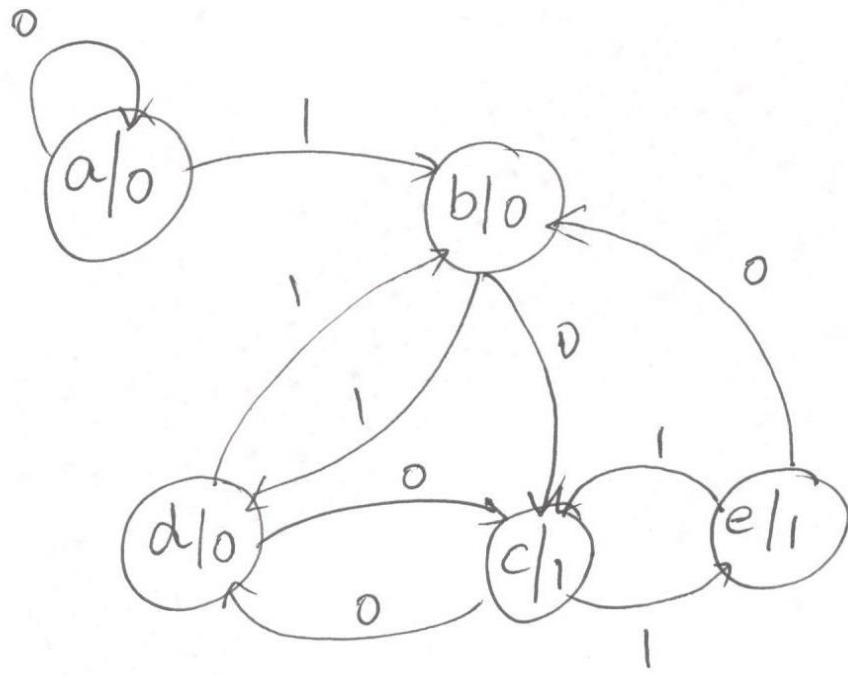

000,111,110,101,100,011,010,001,000

UNIT - V

6 a) Reduce the number of states in the following state table and tabulate the reduced state table using row elimination method. **08**

Present State	Next state		Output	
	X=0	X=1	X=0	X=1
a	f	b	0	0
b	d	c	0	0
c	f	e	0	0
d	g	a	1	0
e	d	c	0	0
f	f	b	1	1
g	g	h	0	1
h	g	a	1	0

b) Analyze the mealy model asynchronous sequential circuit of the given figure and show its stable state and corresponding outputs. Give the state diagram of this circuit. **06**



c) Discuss the steps for conversion between Mealy and Moore model. 06

OR

7 a) Design a Moore model to detect the sequence that receives binary data stream at its input X and signals when a combination '011' arrives at the input by making its output, Y high which otherwise remains low. Consider, data is coming from left i.e. the first bit to be identified is 1, second 1 and third 0 from the input sequence.

b) Reduce the state transition diagram using 10
 i) Row elimination Method ii) Implication table method.
