

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Branch: Information Science and Engineering

Course Code: 22IS3PCDLD

Course: Digital Logic Design

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Write each of the following minterm canonical formula in algebraic form and construct their corresponding truth-tables **05**

$$F(w,x,y,z) = \sum m(1,3,7,8,9,14,15)$$

b) Apply the expansion theorem to the Boolean expressions **05**

$$f(w,x,y,z) = W'XYZ' + Z(XY' + WX')$$

c) Simplify the following Boolean function $f(w,x,y,z) = \sum m(2,6,8,9,10,11,14,15)$ using Quine-McCluskey method. Find Prime-implicants and Essential prime-implicants. **10**

OR

2 a) Simplify the following Boolean function using K-map **05**

$$F(p,q,r,s) = \sum m(0,2,5,7,9,11) + \sum d(3,8,10,12,14)$$

b) Simplify the following Boolean function using Quine-McCluskey method to find the prime implicants. **10**

$$F(a,b,c,d) = \sum m(7,9,12,13,14,15) + \sum d(4,11)$$

c) Using universal gates, design a SOP logic circuit for a 3-variable input where the output is high whenever the inputs are 010,100 and 110. **05**

UNIT - II

3 a) Realize each of the following Boolean expression using 8:1 MUX where x,y,z appear on Select lines S_2, S_1 and S_0 **06**

$$F(w,x,y,z) = \sum m(0,4,6,8,9,11,13,14)$$

b) Implement the following functions using 3X4X2 PLA. **08**

$$F1(a,b,c) = \sum m(0,1,3,4) \quad f2 = \sum m(1,2,3,4,5)$$

c) Illustrate the working of a 1-bit magnitude comparator with a logic circuit and a relevant truth-table. Simplify using K-maps for the circuit diagram. **06**

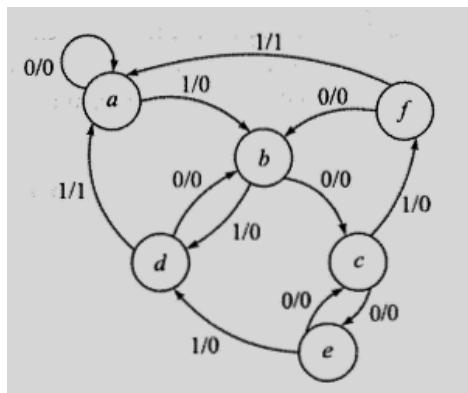
UNIT - III

4 a) Find the characteristic equation of **06**
 i) SR Flip-flop
 ii) JK Flip-flop

b) Illustrate the working of a positive edge triggered D-Flip-flop with a suitable logic circuit diagram and its function table. **08**

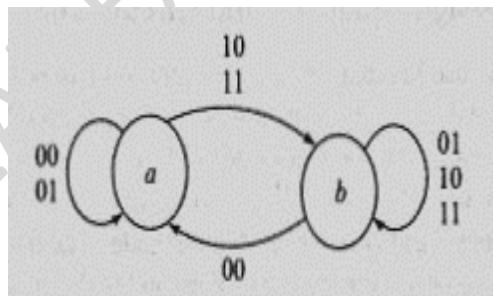
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

c) Explain the working of RS Flip-flop with a block diagram and functional table. **06**


UNIT - IV

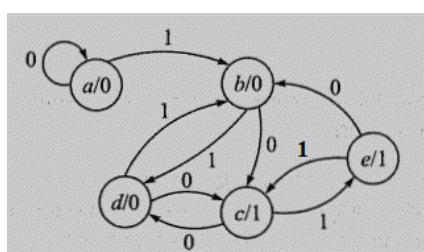
5 a) With a neat diagram, explain the working of a Universal Shift Register in detail. **10**

b) Design a 3-bit Synchronous Up-counter using JK Flip-flops. **10**


UNIT - V

6 a) Reduce the state transition diagram given below using Row Elimination Method. **07**

b) Differentiate between Moore model and mealy model of Sequential logic circuits. **07**


c) Design an asynchronous sequential logic circuit for the following state transition diagram. **06**

OR

7 a) Design a mealy model for detecting the binary data stream 110 with the help of a State Transition diagram, State Synthesis table, Design equations and circuit diagram. **10**

b) Reduce the state transition diagram given below using Row Elimination method. **10**
