

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Information Science and Engineering

Duration: 3 hrs.

Course Code: 22IS3PCDLD

Max Marks: 100

Course: Digital Logic Design

Date: 19.05.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) A four-bit binary number is represented as $A_3A_2A_1A_0$, where $A_3A_2A_1A_0$ represent the individual bits and A_0 is equal to the LSB. Design a logic circuit that will produce a HIGH output whenever the binary number is greater than 0010 and less than 1000. 10
b) Using Quine-McCluskey Method, Obtain all the prime implicants for the following boolean function.
 $f(A, B, C, D) = \sum m(0, 2, 3, 6, 7, 8, 10, 12, 13)$ 10

OR

2 a) Write each of the following minterm canonical formula in algebraic form and construct their corresponding truth tables. 06
i. $f(A, B, C, D) = \sum m(0, 2, 4, 5, 7)$
ii. $f(A, B, C, D) = \sum m(1, 3, 7, 8, 9, 14, 15)$

b) Using Boolean algebra postulates and theorems, Simplify each of the following expressions as disjunctive normal formulas with fewest number of literals. 06
i. $\overline{w}\overline{x}\overline{y}z + w\overline{x}\overline{y}z + xz + xy\overline{z}$
ii. $\overline{x}\overline{y}\overline{z} + \overline{x}\overline{y}z + \overline{x}y\overline{z} + x\overline{y}\overline{z} + x\overline{y}z + xy\overline{z}$

c) Using karnaugh maps, determine all the minimal sums for the following Boolean function: 04
 $F(A, B, C, D) = \sum m(1, 3, 4, 6, 8, 9, 11, 13, 15) + \sum d(0, 2, 14)$

d) Given $F = \sum m(0, 1, 5, 7, 15, 14, 10)$, find number of implicants(I), Prime Implicants(PI), Essential Prime Implicants(EPI) and Redundant Prime Implicants(RPI). 04

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - II

3 a) Realize the following Boolean expression using 10
 $f(w, x, y, z) = \sum m (1, 2, 6, 7, 9, 11, 12, 14, 15)$

- i. an 8-to-1 line multiplexer where x, y and z appear on select lines S_2, S_1 and S_0 respectively.
- ii. An 8-to-1 line multiplexer where w, x and y appear on select lines S_2, S_1 and S_0 respectively.

b) Design a 3-to-8 decoder using two 2-to-4 decoders. 05

c) Implement the following functions using PAL. 05
 $X(A, B, C) = \sum m (2, 3, 5, 7)$
 $Y(A, B, C) = \sum m (0, 1, 5)$
 $Z(A, B, C) = \sum m (0, 2, 3, 5)$

UNIT - III

4 a) Differentiate between combinational circuits and sequential circuits. 05

b) Draw the logic diagram of SR flip flop and explain its working with truth table. 10

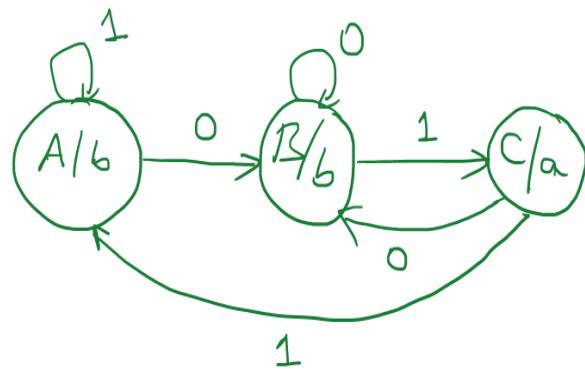
c) Explain the operation of cross coupled NAND gates. 05

UNIT - IV

5 a) Using Negative edge-triggered D flip flops and waveforms, explain the working of 4-bit SIPO shift register. 10

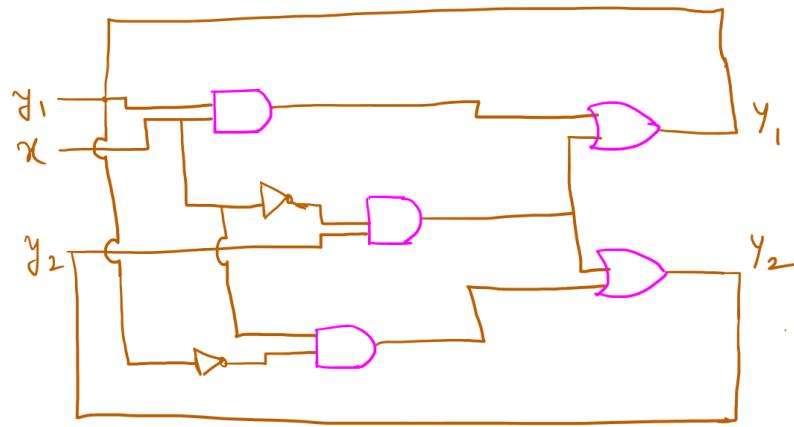
b) Design a synchronous counter to count the sequence $0 \rightarrow 1 \rightarrow 4 \rightarrow 6 \rightarrow 7 \rightarrow 5 \rightarrow 0$ using positive edge triggered JK flipflops. 10

UNIT - V


6 a) Design a Mealy Machine that outputs a 1 whenever the sequence 1010 is encountered in any input binary string. 10

b) Reduce the below state transition diagram using 10
i. Row elimination method
ii. Implication table method

OR


7 a) Elucidate the steps to convert a Mealy machine to Moore machine. Apply the steps to convert the following state transition diagram from Moore model to Mealy model.

10

b) Analyse the following asynchronous sequential circuit and draw transition maps and state table.

10
