

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

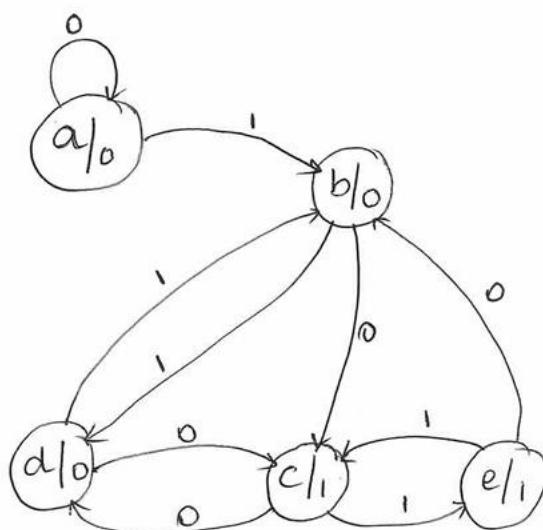
Programme: B.E.

Branch: Information Science and Engineering

Course Code: 23IS3PCDLD

Course: Digital Logic Design

Semester: III


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			
			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	State and Prove De-Morgan's theorems.	CO1	-	05
		b)	Using Karnaugh maps, determine all the minimal sums and minimal products for the following Boolean Functions. i) $f(a,b,c,d) = \pi M(1,5,6,7,9,11,12,13) + \text{dc}(0,3,4)$	CO1	-	05
		c)	A Digital system is to be designed in which the months of the year is given as input in 4-bit form. The month January is represented as 0000, February as 0001 and so on. Output of the system should be '1' corresponding to the inputs of the month containing 31 days or otherwise it is '0'. For this system of 4 variables (A, B, C and D) Find the following: i. Boolean expression in $\sum m$ and πM form. ii. Write the truth table. iii. Using K-map, simplify the Boolean expression for minterms canonical form. iv. Implement the simplified expression using NAND-NAND gates.	CO2	P01	10
			OR			
2	a)	Using K-map, determine all the minimal sums for each of the following Boolean functions. i. $F(A, B, C, D) = \sum m(0,2,4,6,8,9,10,12,14) + d(1,5,11,13)$ ii. $F(W, X, Y, Z) = W'X'Z + XYZ + WX'Z + XY'Z'$	CO2	P01	10	
	b)	Obtain all the Essential Prime Implicants using Quine-McCluskey method. Realize the simplified expression using NAND gates only. $F(A, B, C, D) = \sum m(0,1,2,3,10,11,12,13,14,15)$	CO2	P01	10	
			UNIT - II			
3	a)	Show the organization of a single decade BCD adder. Design the circuit with correction logic.	CO2	P01	10	

	b)	Design a 2-bit magnitude comparator along with the truth-table and logic diagram.	CO2	PO1	05
	c)	Implement the following Boolean function with an 8:1 MUX with A, B and C connected to the selection lines S2, S1 and S0 respectively. $F(A, B, C, D) = \sum m(0, 1, 3, 4, 5, 7, 9, 13, 15)$	CO2	PO1	05
		UNIT - III			
4	a)	With a neat diagram show the operation of JK Master Slave flip flop.	CO3	PO2	10
	b)	Derive the characteristic equations of SR, D, JK and T Flip-flops.	CO3	PO2	10
		UNIT - IV			
5	a)	With a neat block diagram and truth table show the operation performed by Universal Shift Register.	CO3	PO2	10
	b)	Define shift register. With a neat logic diagram, truth table show the working of a Johnson Counter.	CO3	PO2	10
		OR			
6	a)	With a neat logic diagram and truth table, show the working of a four-bit Synchronous Binary Counter.	CO3	PO2	10
	b)	Design a Mod-5 synchronous counter using Negative Edge Triggered JK flip-flops.	CO4	PO3	10
		UNIT - V			
7	a)	Design a Mealy Model Sequence Detector (Synchronous sequential) circuit, that outputs 1 whenever the sequence "011" occurs at its input x otherwise output y is 0.	CO4	PO3	10
	b)	Reduce the state transition diagram given below using: i. Row elimination method ii. Implication table method	CO4	PO3	10
