

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

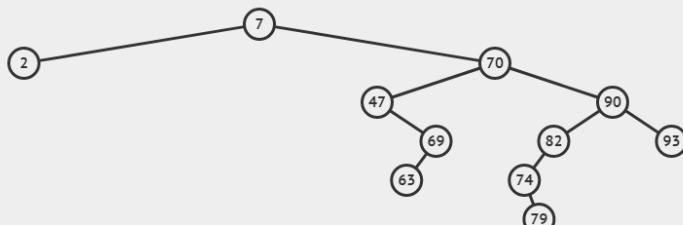
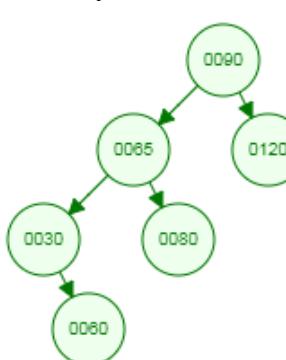
Programme: B.E.

Semester: III

Branch: Information Science and Engineering

Duration: 3 hrs.

Course Code: 22IS3PCDSC



Max Marks: 100

Course: DATA STRUCTURES

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			<i>CO</i>	<i>PO</i>	Marks
1	a)	With the neat sketch describe the classification of Data Structures.	<i>CO1</i>	<i>PO1</i>	05
	b)	Write C routines to read 'n' Student record (Student Name, USN, Marks) and to print the student details who has highest marks.	<i>CO3</i>	<i>PO3</i>	10
	c)	Write a C function to insert front in the given Singly Linked list.	<i>CO3</i>	<i>PO3</i>	05
OR					
2	a)	Elaborate on different dynamic memory management functions used in C programming.	<i>CO1</i>	<i>PO1</i>	05
	b)	A blood bank maintains a list of blood donors. Each donor's name, age, blood group and phone number is stored. Assume 'n' records of donor are stored in a singly linked list. Write C routines for the following: i. Search for a donors for the given blood group ii. Insertion of a new donor.	<i>CO3</i>	<i>PO3</i>	10
	c)	Write a single C routine to insert at the end and display the contents of singly linked list with header node.	<i>CO3</i>	<i>PO3</i>	05
UNIT - II					
3	a)	Implement a C routine to delete the first node in Doubly linked list.	<i>CO3</i>	<i>PO3</i>	06
	b)	Design an algorithm to evaluate postfix expression. Using the same, show how the following postfix expression is evaluated 23+6*3-3/ .	<i>CO1</i>	<i>PO1</i>	06
	c)	Write a C routine to convert the given infix expression to postfix and apply the same to convert the given expression $A+((B-C)*(D-E)+F)/G$.	<i>CO1</i>	<i>PO1</i>	08
UNIT - III					
4	a)	Develop a C program to find and display the Fibonacci series using recursion.	<i>CO3</i>	<i>PO3</i>	05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Write a C program to implement a linear queue of characters using an array. Routines for enqueue (), dqueue() and display () operations to be designed.	CO2	PO2	10
	c)	Differentiate between Circular queue and Linear queue.	CO1		05
UNIT - IV					
5	a)	Write a iterative C routine to delete a node from Binary Search Tree(BST)	CO3	PO3	10
	b)	Construct a BST for the given pre-order traversal 30,20,10,15,25,23,39,35,42	CO2	PO2	04
	c)	Write the inorder, preorder and postorder traversals for the following Binary tree.	CO2	PO2	06
		OR			
6	a)	Explain array representation of binary trees with an example. Also discuss its advantages and disadvantages.	CO1	PO1	05
	b)	Write C routines to implement the following operations on a Binary Tree: <ol style="list-style-type: none"> Find the smallest element in the tree Post-order traversal Count the total numbers of nodes 	CO2	PO2	09
	c)	Why are threaded binary trees needed? Briefly explain a fully threaded binary tree.	CO1	PO1	06
UNIT - V					
7	a)	Elaborate on the types of rotation used in AVL tree with example.	CO1	PO1	08
	b)	Show the resulting Splay tree after inserting for key values 130 and 95 successively in the below given Splay tree.	CO2	PO2	07
	c)	Write the properties of Red-Black Trees. Construct Red-Black Trees for the following sequence of values: 35, 28, 20, 38, 67, 50, 26, 15.	CO2	PO2	05
