

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Information Science and Engineering

Duration: 3 hrs.

Course Code: 23IS3PCDSC/22IS3PCDSC

Max Marks: 100

Course: Data Structures

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Compare Static Memory Allocation and Dynamic Memory Allocation with examples.	<i>CO1</i>	<i>PO1</i>	6
	b)	Design a function to insert an element into a sorted singly linked list.	<i>CO2</i>	<i>PO2</i>	6
	c)	Design a function for the evaluation of a given polynomial using singly linked list along the functions for inserting and reading polynomials. [Consider two variables in the polynomial]	<i>CO3</i>	<i>PO3</i>	8
OR					
2	a)	Design a function to insert an element after a given element in a singly linked list.	<i>CO2</i>	<i>PO2</i>	6
	b)	Design a function to delete a given element in a given singly linked list.	<i>CO3</i>	<i>PO2</i>	6
	c)	Design a function to add two polynomials using singly linked list. [Assume one variable in the polynomial. Also, no need of functions for creation and display of polynomials]	<i>CO3</i>	<i>PO3</i>	8
UNIT - II					
3	a)	Design the following functions using doubly linked list. (i) To insert an element at the end (ii) To display the elements in the reverse order	<i>CO2</i>	<i>PO2</i>	6
	b)	Design PUSH, POP and DISPLAY functions to implement stack using singly linked list.	<i>CO2</i>	<i>PO2</i>	6
	c)	Design an algorithm to evaluate a given postfix expression. Also, evaluate the following postfix expression using this algorithm. 3 5 + 4 6 * +	<i>CO3</i>	<i>PO3</i>	8

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR					
4	a)	Design the following functions using circular singly linked list. (i) To insert an element at the beginning (ii) To delete an element at the end	<i>CO2</i>	<i>PO2</i>	6
	b)	Design PUSH, POP and DISPLAY functions to implement stack using arrays.	<i>CO2</i>	<i>PO2</i>	4
	c)	Design an algorithm to convert an infix expression to an equivalent postfix expression. Also, convert the following infix expression to postfix expression using this algorithm. $(2 + 8 * (3 - 6))$	<i>CO3</i>	<i>PO3</i>	10
UNIT - III					
5	a)	Compare iteration and recursion with examples.	<i>CO1</i>	<i>PO1</i>	4
	b)	Write recursive C functions for the following with an example. (i) GCD of two numbers (ii) To find the n^{th} Fibonacci number	<i>CO2</i>	<i>PO2</i>	8
	c)	Write C functions to perform insertion, deletion and display elements of a circular queue.	<i>CO2</i>	<i>PO2</i>	8
OR					
6	a)	Write recursive C functions and sketch the tracings for the following: (i) Tower of Hanoi for $n=2$ (ii) To find the factorial for $n=4$	<i>CO2</i>	<i>PO2</i>	8
	b)	Write C functions for inserting, deleting and displaying elements in a Linear Queue.	<i>CO2</i>	<i>PO2</i>	6
	c)	Elucidate the concept of double ended queue.	<i>CO1</i>	<i>PO1</i>	6
UNIT - IV					
7	a)	Construct a Binary Search Tree for the following numbers inserted in sequence. Also write a C function to create a BST. 23 12 68 56 20 02 29 08	<i>CO2</i>	<i>PO2</i>	8
	b)	Design the following functions. (i) To find the height of a tree (ii) To find the minimum element in a BST	<i>CO2</i>	<i>PO2</i>	6
	c)	Illustrate the inorder threaded binary trees with an example.	<i>CO1</i>	<i>PO1</i>	6
OR					
8	a)	Elucidate the 3 cases to be considered for deletion of an element in a Binary Search Tree. Write suitable examples for each case.	<i>CO3</i>	<i>PO3</i>	8

		b)	Design the following functions. (i) To count the number of nodes with exactly one child (ii) To find the maximum element in a BST	CO2	PO2	6
		c)	Construct a binary tree when the following traversals are given. (i) Preorder: G I B A H C D N M E Inorder: B A I H G N D M C E (ii) Inorder: F A I E B D C H G Postorder: I A F E C H G D B	CO3	PO3	6
UNIT - V						
	9	a)	Construct an AVL tree for the following sequence of elements. 1, 2, 3, 4, 5, 6, 7, 8, 9	CO3	PO3	8
		b)	Write the properties of Red Black trees.	CO1	PO1	6
		c)	Construct a splay tree for the sequence of elements. 15, 10, 17, 7, 13, 16	CO3	PO3	6
OR						
	10	a)	Design a function to insert an element into an AVL tree.	CO2	PO2	10
		b)	Construct a Red Black tree for the following sequence of elements. 2, 1, 4, 5, 9, 3, 6, 7	CO3	PO3	6
		c)	Describe the concept of splaying in a Splay tree with an example.	CO1	PO1	4
