

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

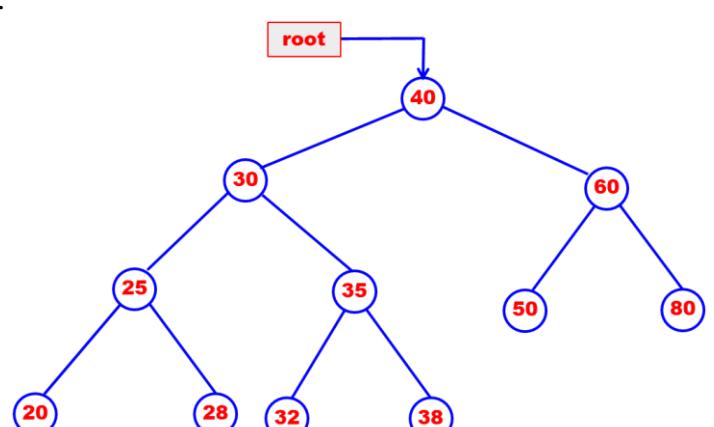
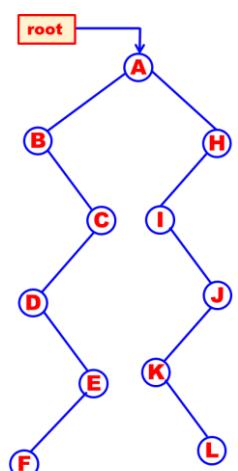
Programme: B.E.

Branch: Information Science and Engineering

Course Code: 23IS3PCDSC

Course: Data Structures

Semester: III



Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Compare Static Memory Allocation and Dynamic Memory Allocation.	<i>CO1</i>	<i>PO1</i>	05
	b)	Design a C function to split a given Singly Linked List into two lists with one containing data having even numbers and other containing odd numbers.	<i>CO2</i>	<i>PO2</i>	08
	c)	Design a C function to find the middle element in a given Singly Linked List.	<i>CO2</i>	<i>PO2</i>	07
OR					
2	a)	Design a C function to Reverse a given Singly Linked List.	<i>CO2</i>	<i>PO2</i>	04
	b)	Design a C function to find the n^{th} element from the end of a given Singly Linked List.	<i>CO2</i>	<i>PO2</i>	07
	c)	Write a C Program to evaluate a given Polynomial expression. [Assume that the Polynomial has two variables X and Y]	<i>CO3</i>	<i>PO3</i>	09
UNIT - II					
3	a)	Write a C function to insert an element after a given element in a Doubly linked List	<i>CO1</i>	<i>PO1</i>	08
	b)	Write a C function to create a Circular Singly Linked List by continuously inserting the elements at the end.	<i>CO1</i>	<i>PO1</i>	06
	c)	Write a C function to display the elements of a Doubly Linked List in Reverse order.	<i>CO1</i>	<i>PO1</i>	06
UNIT - III					
4	a)	Compare Iteration and Recursion.	<i>CO1</i>	<i>PO1</i>	04
	b)	(i) Write a Recursive function for Tower of Hanoi. Show the function call tracing when $n=2$. (ii) Write a Recursive function to print a given number in reverse order. Show the tracing for the number 1234.	<i>CO2</i>	<i>PO2</i>	08
	c)	Write a C Program to implement Circular Queue using Arrays.	<i>CO3</i>	<i>PO3</i>	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV					
5	a)	<p>Write a C function to insert an element into a given Binary Search Tree. Show how 37 is inserted into the following Binary Search Tree.</p>	<i>CO2</i>	<i>PO2</i>	06
	b)	<p>Construct a Binary Tree when the following Traversals are given:</p> <p>(i) Preorder: A B D I J C E K L M N P Inorder: I J D B C E A L N P M K</p> <p>(ii) Inorder: P N R V Q M S U T O Postorder: P V R Q N U T S O M</p>	<i>CO2</i>	<i>PO2</i>	06
	c)	<p>Write C functions for the following:</p> <p>(i) To find the Maximum element in a Binary Search Tree (ii) To find the Height of a Binary Tree (iii) To find the number of elements with exactly one child in a Binary Tree</p>	<i>CO3</i>	<i>PO3</i>	08
OR					
6	a)	<p>Write a C function to construct a Binary Search Tree. Show how a Binary Search Tree is constructed with the following elements in sequence.</p> <p>40 70 05 65 26 44 85 02</p>	<i>CO2</i>	<i>PO2</i>	06
	b)	<p>Find the Preorder, Inorder and Postorder for the following Binary Tree</p>	<i>CO2</i>	<i>PO2</i>	06

	c)	<p>Write a C function to delete a given element from a Binary Search Tree. Show how element 26 is deleted from the following Tree.</p>	<i>CO3</i>	<i>PO3</i>	08
UNIT - V					
7	a)	<p>Construct a Splay tree for the following set of integers:</p> <p style="text-align: center;">2 , 1 , 4 , 5 , 3 , 6 , 7</p>	<i>CO3</i>	<i>PO3</i>	06
	b)	<p>Discuss the use of four types of rotations used in AVL tree with examples.</p>	<i>CO1</i>	<i>PO1</i>	08
	c)	<p>With step by step explanation, create a Red-Black tree for the following integers:</p> <p style="text-align: center;">9 , 8 , 7 , 3 , 5 , 2</p>	<i>CO3</i>	<i>PO3</i>	06
