

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

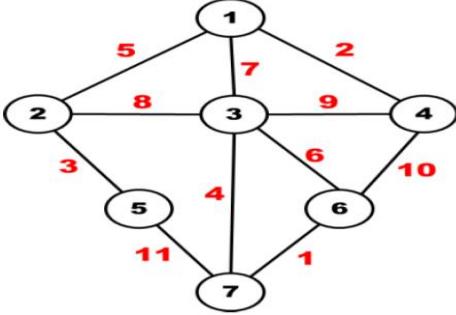
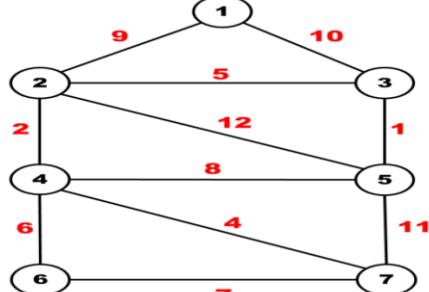
Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

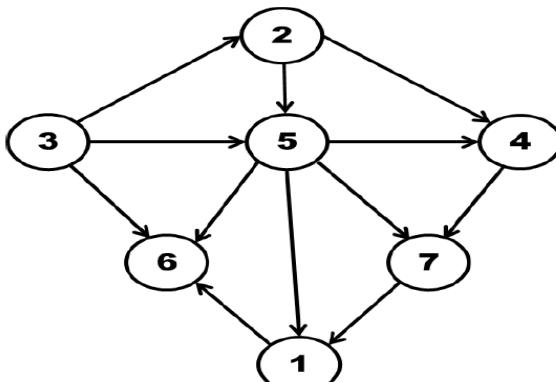
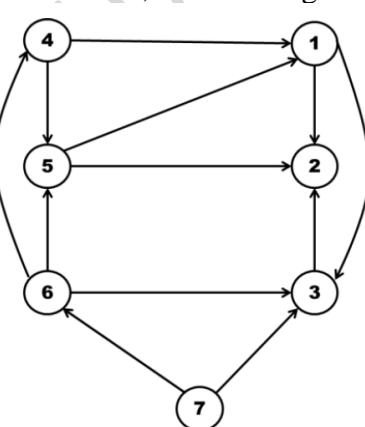
Programme: B.E.

Branch: Information Science and Engineering

Course Code: 22IS4PCADA



Course: Analysis and Design of Algorithms

Semester: IV



Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Derive the time complexity for the following Algorithms: i) Tower of Hanoi ii) To find the nth factorial of a number	CO2	P02	08
	b)	Describe with a neat flowchart, the process of algorithm design and analysis.	CO1	P01	06
	c)	Define Big Oh, Omega and Theta notations for analyzing the algorithm.	CO1	P01	06
UNIT - II					
2	a)	Apply Merge Sort to sort the characters in the list {F, D, G, E, A, H, B, C} in alphabetical order. Also, derive the time complexity of Merge Sort.	CO2	P02	10
	b)	Solve the following graph for its minimum spanning tree using i) Prim's algorithm (source vertex= 2) ii) Kruskal's algorithm 	CO3	P03	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		OR			
3	a)	Explain how exhaustive search can be applied to the sorting problem and determine the efficiency class of such an algorithm.	CO2	PO2	04
	b)	With an example, discuss how to find the Pattern String in the Main String using Brute Force Pattern Matching Algorithm. Also, discuss its worst case time complexity.	CO2	PO2	06
	c)	Write the quick sort algorithm. Apply the same to sort the list 42,37,11,98,36,72,65,10,88,78	CO2	PO2	10
		UNIT - III			
4	a)	Apply DFS Algorithm to find the graph traversal starting from vertex 3 along with the stack trace tree for the following Graph. Also, write the DFS algorithm.	CO2	PO2	10
	b)	<p>Find the Topological sequence for the following Graph using source removal method. Also, write the algorithm.</p>	CO2	PO2	10
		OR			
5	a)	Write the Johnson Trotter algorithm. Generate all permutations for the set {4,3,2,1} using Johnson Trotter algorithm.	CO2	PO2	10
	b)	<p>For the input {30, 20, 56, 75, 31, 19} and hash function $h(k) = k \bmod 11$</p> <ol style="list-style-type: none"> Construct the closed hash table Find the largest and average number of key comparisons in a successful search for hash table 	CO3	PO3	10

UNIT - IV					
6	a)	Write the Heap Sort Algorithm. Show how the following numbers are sorted using Heap Sort {11, 44, 10, 65, 50, 6, 88, 3}.	CO3	PO3	10
	b)	Apply Floyd's algorithm to compute all pairs shortest path for the following graph.	CO3	PO3	10
UNIT - V					
7	a)	Differentiate between NP Hard and NP Complete Problems.	CO1	PO1	05
	b)	Find any one solution to 4-queens problem using backtracking. Draw the state-space tree.	CO3	PO3	05
	c)	Solve the following instance of the Job Assignment Problem using the branch-and-bound algorithm design technique.	CO3	PO3	10

	Job 1	Job 2	Job 3	Job 4
Person 1	9	6	5	7
Person 2	2	4	8	6
Person 3	7	3	1	9
Person 4	7	6	9	4
