

--	--	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

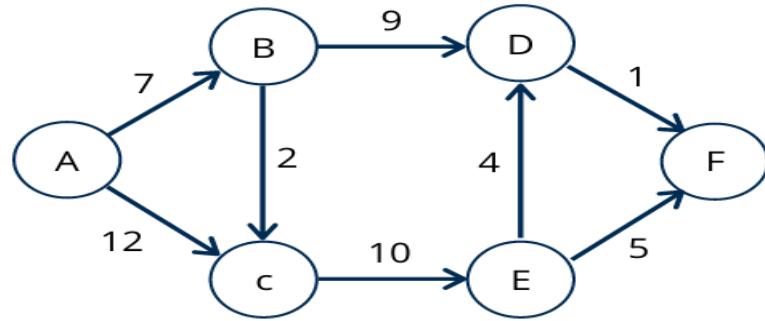
Programme: B.E.

Branch: Information Science and Engineering

Course Code: 22IS4PCADA

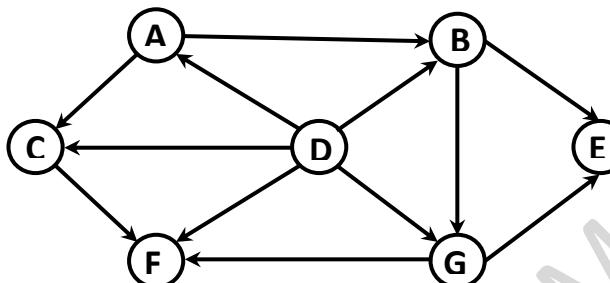
Course: Analysis and Design of Algorithms

Semester: IV


Duration: 3 hrs.

Max Marks: 100

Date: 22.09.2023


Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	i. Design a recursive algorithm for computing 2^n for any nonnegative integer n that is based on the formula: $2^n = 2^{n-1} + 2^{n-1}$	ii. Set up a recurrence relation for the number of additions made by the algorithm and solve it.	iii. Draw a tree of recursive calls for this algorithm and count the number of calls made by the algorithm.	<i>CO3</i>	<i>PO3</i>	08
		b)	Discuss the general plan to find the efficiency of recursive algorithms. Apply the same to find the efficiency of solving Tower of Hanoi problem.			<i>CO1</i>	<i>PO1</i>	08
		c)	Apply Master's Theorem for the following i) $T(n) = 2T(n/4) + n$ ii) $T(n) = 8T(n/2) + n^3$			<i>CO2</i>	<i>PO2</i>	04
			UNIT - II					
	2	a)	Design an algorithm used to perform partition in Quick Sort. Discuss with recurrences the efficiency of Quick Sort in Best and Worst case.			<i>CO3</i>	<i>PO3</i>	08
		b)	Define Spanning Tree. Discuss with time complexity the Prim's algorithm to construct Minimum Spanning Tree.			<i>CO1</i>	<i>PO1</i>	08
		c)	Design an algorithm to find the position of maximum element in an array using Divide and Conquer. Comment on its time complexity.			<i>CO3</i>	<i>PO3</i>	04
			OR					
	3	a)	Write the Bubble Sort algorithm. Find the number of swaps done while sorting the following set of elements in ascending order using Bubble Sort. 6 2 11 7 5			<i>CO2</i>	<i>PO2</i>	08
		b)	Explain Dijkstra's shortest path algorithm. Using the same, find the shortest path from vertex A to the remaining vertices.			<i>CO2</i>	<i>PO2</i>	12

UNIT - III

4 a) Write algorithms to perform DFS and BFS traversal. Apply DFS method to find the topological order for the graph given below.

b) Write the Horspool's algorithm. How many character comparisons will be made using Horspool's algorithm in searching for each of the following patterns in a text of 1000 A's?

- i) AAAAB
- ii) BAAAA

OR

5 a) Write the Johnson Trotter algorithm for generating permutations. Apply the same for an input {5,6,7,8}.

CO3

PO3

12

b) With Pseudocode, discuss Horspool's String matching algorithm and analyze its time complexity.

CO2

PO2

08

c) Design an algorithm to compute the value of the smallest element in a given array using Decrease and Conquer. Comment on its time complexity.

CO3

PO3

04

UNIT - IV

6 a) Write the algorithm for computing binomial coefficient $C(n,k)$ using dynamic programming approach. Draw the binomial coefficient table for $C(8, 3)$.

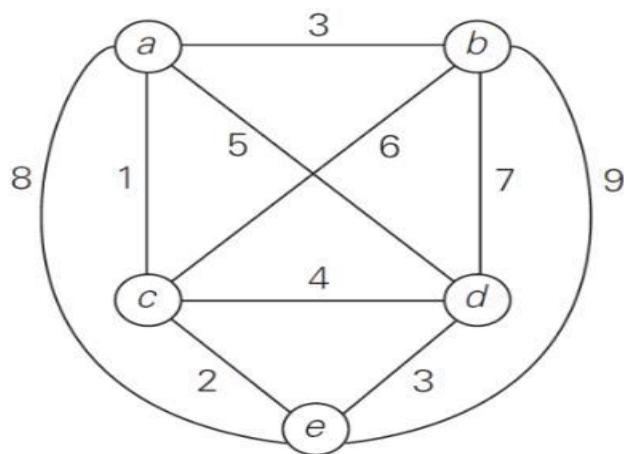
CO2

PO2

08

b) Design an algorithm to construct a max heap using bottom up approach. Trace by applying the same to sort the following elements

S O R T I N G


CO3

PO3

12

UNIT – V

7 a) Consider the graph given below representing an instance of TSP, where source vertex is “a”. Solve the problem instance using Branch and Bound technique.

CO2 PO2 08

b) Differentiate between promising and non-promising node. Construct the state-space tree using backtracking strategy to solve the following instance of the subset sum problem:
 $A = \{1,3,5,8,9\}$ and $\text{Sum} = 12$

CO3 PO3 08

c) Define NP, NP-complete class of problems with examples.

CO1 PO1 04
