

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

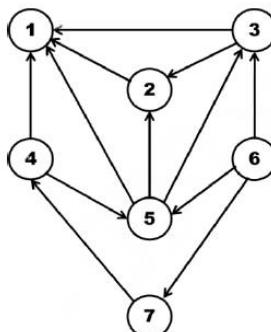
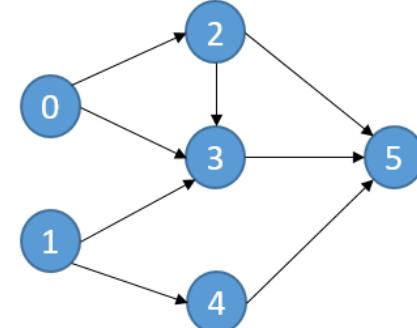
Programme: B.E.

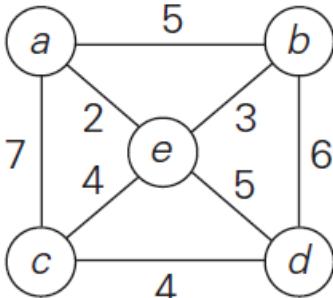
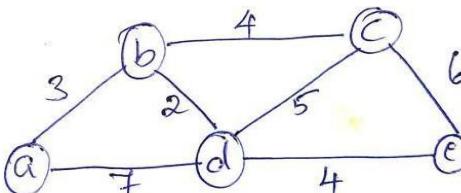
Semester: IV

Branch: Information Science and Engineering

Duration: 3 hrs.

Course Code: 23IS4PCADA



Max Marks: 100



Course: Analysis and Design of Algorithms

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			<i>CO</i>	<i>PO</i>	Marks
1	a)	Explain different asymptotic notations used to represent the time complexities with suitable examples.	<i>CO1</i>	-	10
	b)	Outline selection sort and Bubble sort algorithms with example.	<i>CO2</i>	<i>PO1</i>	10
UNIT - II					
2	a)	Write the quick sort algorithm. Apply the same to sort the list {E, X, A, M, P, L, E} in alphabetical order.			<i>CO2</i> <i>PO1</i> 12
	b)	Apply source removal method to solve the following topological sorting problem.			<i>CO2</i> <i>PO1</i> 08
OR					
3	a)	Find the BFS and DFS traversals starting from vertex 6 for the following Graph. Also, write the BFS and DFS Algorithms.			<i>CO2</i> <i>PO1</i> 12

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Apply Merge sort algorithm to sort the numbers {14, 91, 07, 01, 10, 29, 08, 02}. Show the Merge call tree for the same.	CO2	PO1	08															
		UNIT - III																		
4	a)	Write the Prim's algorithm. Apply Prim's algorithm to the following graph. Start from vertex 'a'.	CO3	PO1	10															
	b)	Solve the following instance of Knapsack problem using dynamic programming. Knapsack Capacity M=10	CO2	PO1	10															
		<table border="1" data-bbox="414 826 1092 961"> <tr> <td>Item</td> <td>1</td> <td>2</td> <td>3</td> <td>4</td> </tr> <tr> <td>Weight</td> <td>4</td> <td>7</td> <td>5</td> <td>3</td> </tr> <tr> <td>Profit</td> <td>40</td> <td>42</td> <td>25</td> <td>12</td> </tr> </table>	Item	1	2	3	4	Weight	4	7	5	3	Profit	40	42	25	12			
Item	1	2	3	4																
Weight	4	7	5	3																
Profit	40	42	25	12																
		OR																		
5	a)	Apply Floyd's algorithm to find all pairs shortest path for the given adjacency matrix.	CO2	PO1	10															
		$W = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 1 & \infty & 1 & 5 \\ 2 & 9 & 0 & 3 & 2 & \infty \\ 3 & \infty & \infty & 0 & 4 & \infty \\ 4 & \infty & \infty & 2 & 0 & 3 \\ 5 & 3 & \infty & \infty & \infty & 0 \end{bmatrix}$																		
	b)	Using Dijkstra's algorithm, trace the following graph to get shortest path from vertex 'a' to all other vertices. Also, write the algorithm.	CO3	PO1	10															
		UNIT - IV																		
6	a)	Write the Heap Sort Algorithm. Show how the following numbers are sorted using Heap Sort {11, 44, 10, 65, 50, 6, 88, 3}.	CO3	PO1	12															

	b)	For the input {30, 20, 56, 75, 31, 19} and hash function $h(k)=k \bmod 11$ i) Construct the closed hash table ii) Find the largest and average number of key comparisons in a successful search for hash table	CO2	PO1	08
		UNIT - V			
7	a)	Differentiate between NP Hard and NP Complete Problems.	CO2	PO2	06
	b)	Find any one solution to 4-queens problem using backtracking. Draw the state-space tree.	CO3	PO1	05
	c)	Obtain the optimal solution for the given job assignment problem using Branch and Bound method.	CO2	PO1	09

	JOB1	JOB2	JOB3	JOB4
Person A	9	2	7	8
Person B	6	4	3	7
Person C	5	8	1	8
Person D	7	6	9	4

B.M.S.C.E. - EVEN SEM 2023-24