

U.S.N.									
--------	--	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Information Science and Engineering

Duration: 3 hrs.

Course Code: 23IS4PCADA

Max Marks: 100

Course: Analysis and Design of Algorithms

			UNIT - 1			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Discuss the Asymptotic Notations with their definitions.			CO2	PO1	6	
		b)	Find the Time Complexity for the following Algorithms: (i) Factorial of a given number (ii) Tower of Hanoi			CO2	PO1	8	
		c)	Compare Bubble Sort and Selection Sort in the Best and Worst cases.			CO2	PO2	6	
			OR						
	2	a)	Design a recursive algorithm for computing 2^n for a non-negative integer n, based on the formula $2^n = 2^{n-1} + 2^{n-1}$. Setup a recurrence relation for the number of additions made by the algorithm and solve it.			CO3	PO3	8	
		b)	Find algorithm efficiency with respect to time for the following algorithms:	<div style="border: 1px solid black; padding: 10px;"> 1. Algo_X(n) { x=0; for(i=0; x<=n; i++) x= x+i; } </div> <div style="border: 1px solid black; padding: 10px; margin-left: 20px;"> 2. Algo_Hanoi (disk, source, dest, aux) { IF disk == 1, THEN move disk from source to dest ELSE Hanoi (disk - 1, source, aux, dest) move disk from source to dest Hanoi (disk - 1, aux, dest, source) END IF } </div>			CO2	PO1	8
		c)	Use recursion tree to solve $T(n) = 2T(n/2) + cn$, where $c > 0$ is constant.			CO2	PO1	4	
UNIT - 2									
3	a)	Show how the following numbers gets sorted using Merge Sort:				CO1	PO2	8	

		<p>72 46 24 57 12 68 07 18 Also, write the Merge sort Algorithm.</p>			
	b)	<p>Find the BFS traversals starting from vertex 7 for the following Graph. Also, write the BFS Algorithm.</p>	CO3	PO3	7
	c)	<p>Find the Topological Sequence for the following Graph [using any method].</p>	CO3	PO3	5
		OR			
4	a)	<p>Show how the following numbers gets sorted using Quick Sort: 84 23 68 09 96 66 05 25 Also, write the Quick Sort Algorithm.</p>	COI	POI	12
	b)	<p>Find the DFS traversal starting from vertex 2 for the following Graph. Also, write the DFS Algorithm.</p>	CO3	PO3	8

			UNIT - 3																												
5	a)		Find the Minimum Spanning Tree for the following Graph using Prim's Algorithm and also Write the Prim's Algorithm.	CO3	PO3	10																									
	b)		Solve the following 0/1 Knapsack problem using dynamic programming: $P = (11, 7, 9, 14)$ $W = (1, 5, 4, 6)$ $C = 10$ $n = 4$	CO2	PO1	10																									
			OR																												
6	a)		Apply Dijkstra's algorithm to find shortest path from the vertex 1 to all other vertices for the following graph:	CO3	PO3	6																									
	b)		Construct a Huffman tree and find the Huffman code for each character shown below:	CO1	PO1	7																									
			<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Character</th> <th>Frequency</th> </tr> </thead> <tbody> <tr> <td>A</td> <td>10</td> </tr> <tr> <td>B</td> <td>15</td> </tr> <tr> <td>C</td> <td>12</td> </tr> <tr> <td>D</td> <td>3</td> </tr> <tr> <td>E</td> <td>4</td> </tr> <tr> <td>F</td> <td>13</td> </tr> <tr> <td>G</td> <td>1</td> </tr> </tbody> </table>	Character	Frequency	A	10	B	15	C	12	D	3	E	4	F	13	G	1												
Character	Frequency																														
A	10																														
B	15																														
C	12																														
D	3																														
E	4																														
F	13																														
G	1																														
	c)		Apply Floyd's Algorithm to find the All-Pair Shortest Path for the following:	CO3	PO3	7																									
			<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th></th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>0</td> <td>5</td> <td>∞</td> <td>∞</td> </tr> <tr> <td>2</td> <td>50</td> <td>0</td> <td>15</td> <td>5</td> </tr> <tr> <td>3</td> <td>30</td> <td>∞</td> <td>0</td> <td>15</td> </tr> <tr> <td>4</td> <td>15</td> <td>∞</td> <td>5</td> <td>0</td> </tr> </tbody> </table>		1	2	3	4	1	0	5	∞	∞	2	50	0	15	5	3	30	∞	0	15	4	15	∞	5	0			
	1	2	3	4																											
1	0	5	∞	∞																											
2	50	0	15	5																											
3	30	∞	0	15																											
4	15	∞	5	0																											

			UNIT - 4																															
	7	a)	Apply Boyer Moore algorithm to search the given substring in the main string. Also, write the number of shifts required during searching. Main String = “MISS MISS IN MISSISSIPPI” Substring = “MISS”				CO3	PO3	8																									
		b)	Show how the following numbers are sorted by Heap Sort. 23 74 06 68 12 66 10 16				CO1	PO1	6																									
		c)	Construct a Hash Table by Linear Probing/Closed Hashing for the following words. Consider the size and the hash table as 10. WHERE, IS, NOW, THIS, AN, THAT, HOW, AND				CO1	PO1	6																									
			OR																															
	8	a)	Construct an AVL tree for the list: {6, 5, 4, 3, 2, 1} by inserting their elements successively, starting with an empty tree.				CO2	PO1	6																									
		b)	Differentiate between open hashing and separate chaining.				CO1	PO2	6																									
		c)	Given the input {30, 20, 56, 75, 31, 19} and hash function $h(K) = K \bmod 11$, answer the following questions: i) Construct the open hash table. ii) Find the largest number of key comparisons in a successful search in this table. iii) Find the average number of key comparisons in a successful search in this table.				CO1	PO1	8																									
			UNIT - 5																															
	9	a)	Show the solution for 4-Queens problem using Backtracking and write an algorithm for n-Queens problem using Backtracking.				CO3	PO3	8																									
		b)	Solve the following Job Assignment Problem using the branch-and-bound technique:				CO3	PO3	7																									
			<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th></th><th>Job 1</th><th>Job 2</th><th>Job 3</th><th>Job 4</th></tr> </thead> <tbody> <tr> <td>Person 1</td><td>5</td><td>6</td><td>9</td><td>7</td></tr> <tr> <td>Person 2</td><td>8</td><td>4</td><td>2</td><td>6</td></tr> <tr> <td>Person 3</td><td>1</td><td>3</td><td>7</td><td>9</td></tr> <tr> <td>Person 4</td><td>9</td><td>6</td><td>7</td><td>4</td></tr> </tbody> </table>					Job 1	Job 2	Job 3	Job 4	Person 1	5	6	9	7	Person 2	8	4	2	6	Person 3	1	3	7	9	Person 4	9	6	7	4			
	Job 1	Job 2	Job 3	Job 4																														
Person 1	5	6	9	7																														
Person 2	8	4	2	6																														
Person 3	1	3	7	9																														
Person 4	9	6	7	4																														
		c)	Discuss the concept of P, NP, NP-Complete and NP-Hard Problems.				CO2	PO2	5																									
			OR																															
	10	a)	Apply backtracking to solve the following instance of the subset-sum problem $S = \{3, 5, 6, 7\}$ and $d = 15$.				CO2	PO1	8																									
		b)	With the help of a state space tree, solve the following instance of Knapsack problem by the branch and bound algorithm. Knapsack Capacity $W = 10$				CO1	PO1	8																									
		c)	Distinguish between P, NP and NP-Complete problems. Give example for each category.				CO1	PO2	4																									
