

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

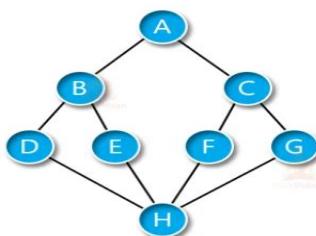
June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Information Science and Engineering

Duration: 3 hrs.


Course Code: 23IS4PCADA/22IS4PCADA/19IS4PCADA

Max Marks: 100

Course: Analysis and Design of Algorithms

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Illustrate the asymptotic notations to measure the efficiency of an algorithm.	CO1	PO1	4
		b)	Apply Selection Sort for the given list: {23, 78, 45, 8, 32, 56} and derive its efficiency.	CO2	PO2	8
		c)	Explain general plan for analyzing efficiency of recursive algorithms and apply the same to find time complexity of the Tower of Hanoi Algorithm.	CO2	PO2	8
			OR			
	2	a)	Derive the time complexity to find the n^{th} Fibonacci number.	CO2	PO2	4
		b)	Write the bubble sort algorithm. Apply the same to sort the list of the given elements {5, 3, 8, 4, 6} in ascending order.	CO2	PO1	8
		c)	Provide an algorithm to find the uniqueness of elements in an array and prove its efficiency as $\Theta(n^2)$.	CO2	PO2	8
			UNIT - II			
	3	a)	Write the quick sort algorithm. Apply the algorithm to sort the list {5, 3, 1, 9, 8, 2, 4, 7}.	CO1	PO1	10
		b)	Find the BFS traversal starting from vertex A for the following Graph. Also, provide the BFS Algorithm.	CO1	PO1	10

OR					
4	a)	Discuss how Strassen's Matrix Multiplication saves time when used with divide and conquer, with its equations. Apply Strassen's Matrix Multiplication for the following:	<i>COI</i>	<i>POI</i>	10
		$ \begin{bmatrix} 1 & 0 & 2 & 1 \\ 4 & 1 & 1 & 0 \\ 0 & 1 & 3 & 0 \\ 5 & 0 & 2 & 1 \end{bmatrix} * \begin{bmatrix} 0 & 1 & 0 & 1 \\ 2 & 1 & 0 & 4 \\ 2 & 0 & 1 & 1 \\ 1 & 3 & 5 & 0 \end{bmatrix} $			
	b)	Obtain a topological sorting algorithm using the Decrease and Conquer technique. Apply the same method to solve the following topological sorting problem.	<i>COI</i>	<i>POI</i>	10
UNIT - III					
5	a)	Find the minimum spanning tree using Prim's algorithm for the graph given below S as the arbitrary root.	<i>COI</i>	<i>POI</i>	6
	b)	Write Floyd's algorithm and apply the same to solve the following problem.	<i>COI</i>	<i>POI</i>	8

	c)	Apply Knapsack algorithm using dynamic programming to find an optimal solution for the given instances: (Capacity of the Knapsack =8).	COI	POI	6															
		<table border="1"> <thead> <tr> <th>Item</th><th>A</th><th>B</th><th>C</th><th>D</th></tr> </thead> <tbody> <tr> <td>Profit</td><td>2</td><td>4</td><td>7</td><td>10</td></tr> <tr> <td>Weight</td><td>1</td><td>3</td><td>5</td><td>7</td></tr> </tbody> </table>	Item	A	B	C	D	Profit	2	4	7	10	Weight	1	3	5	7			
Item	A	B	C	D																
Profit	2	4	7	10																
Weight	1	3	5	7																
		OR																		
6	a)	Provide single-source shortest path algorithm. Apply the algorithm on the following graph, with vertex "A" as the source.	COI	POI	6															
	b)	Construct the Huffman code for the following data.	COI	POI	8															
		<table border="1"> <thead> <tr> <th>symbol</th><th>A</th><th>B</th><th>C</th><th>D</th><th>-</th></tr> </thead> <tbody> <tr> <td>frequency</td><td>0.35</td><td>0.1</td><td>0.2</td><td>0.2</td><td>0.15</td></tr> </tbody> </table> <p>Also i) encode DAD and ADD ii) Decode 10011011011101</p>	symbol	A	B	C	D	-	frequency	0.35	0.1	0.2	0.2	0.15						
symbol	A	B	C	D	-															
frequency	0.35	0.1	0.2	0.2	0.15															
	c)	Write the algorithm for computing binomial coefficient $C(n, k)$ using dynamic programming approach. Represent the binomial coefficient table for $C(7, 5)$.	COI	POI	6															
		UNIT - IV																		
7	a)	For the input {30, 20, 56, 75, 31, 19} and hash function $h(k) = k \bmod 11$	COI	PO2	10															
		i) Construct the closed hash table ii) Find the largest and average number of key comparisons in a successful search for hash table																		
	b)	Sort the following list of elements {82, 90, 10, 12, 15, 77, 55, 23} by using Heap sort technique in an ascending order. Also, write an algorithm for the same.	COI	POI	10															
		OR																		
8	a)	Provide Boyer-Moore matcher algorithm. Apply the same algorithm to search for the pattern STOR in the text STOU TOR STOR .	COI	POI	7															
	b)	Construct an AVL Tree for the following set of elements: {1, 2, 3, 4, 5, 6, 7}	COI	POI	6															

		c)	Design a Presorting-based algorithm to check element uniqueness in an array and determine its time efficiency.	<i>CO2</i>	<i>PO2</i>	7																									
			UNIT - V																												
	9	a)	Apply the Backtracking technique to solve the following instance of the subset sum problem $S = \{3, 5, 6, 7\}$ and $d=15$. Also, represent the State Space Tree for the above Problem	<i>CO1</i>	<i>PO1</i>	10																									
		b)	Apply Backtracking for the 4 Queens problem and draw a state space tree to obtain the solution. Also, write an algorithm for the same.	<i>CO1</i>	<i>PO1</i>	10																									
			OR																												
	10	a)	Find the optimal solution for the following Job Assignment problem using branch-and-bound technique.	<i>CO1</i>	<i>PO1</i>	6																									
			<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <th></th><th>J1</th><th>J2</th><th>J3</th><th>J4</th></tr> <tr> <td>P1</td><td>9</td><td>2</td><td>7</td><td>8</td></tr> <tr> <td>P2</td><td>6</td><td>4</td><td>3</td><td>7</td></tr> <tr> <td>P3</td><td>5</td><td>8</td><td>1</td><td>8</td></tr> <tr> <td>P4</td><td>7</td><td>6</td><td>9</td><td>4</td></tr> </table>		J1	J2	J3	J4	P1	9	2	7	8	P2	6	4	3	7	P3	5	8	1	8	P4	7	6	9	4			
	J1	J2	J3	J4																											
P1	9	2	7	8																											
P2	6	4	3	7																											
P3	5	8	1	8																											
P4	7	6	9	4																											
		b)	Distinguish between P, NP, NP-complete and NP-Hard Problems. Give examples for each category.	<i>CO1</i>	<i>PO1</i>	6																									
		c)	Use branch-and-bound technique to find optimal solution for the given Knapsack problem where capacity =10.	<i>CO1</i>	<i>PO1</i>	8																									
			<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Item</th><th>Weight</th><th>Value</th></tr> </thead> <tbody> <tr> <td>1</td><td>4</td><td>40</td></tr> <tr> <td>2</td><td>7</td><td>42</td></tr> <tr> <td>3</td><td>5</td><td>25</td></tr> <tr> <td>4</td><td>3</td><td>12</td></tr> </tbody> </table>	Item	Weight	Value	1	4	40	2	7	42	3	5	25	4	3	12													
Item	Weight	Value																													
1	4	40																													
2	7	42																													
3	5	25																													
4	3	12																													
