

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

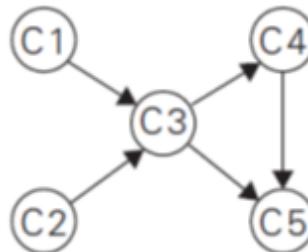
Programme: B.E.

Semester: IV

Branch: Information Science and Engineering

Duration: 3 hrs.

Course Code: 23IS4PCADA


Max Marks: 100

Course: Analysis and Design of Algorithms

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain asymptotic notations to measure efficiency of an algorithm.	<i>CO2</i>	-	4
	b)	Explain general plan for analyzing efficiency of recursive algorithms and apply same to find time complexity for Tower of Hanoi problem.	<i>CO2</i>	<i>PO2</i>	8
	c)	Write the bubble sort algorithm. Apply the same to sort the list of elements {16, 12, 18, 4, 10} in ascending order and compute the maximum number of comparison required to sort those elements.	<i>CO2</i>	<i>PO1</i>	8
UNIT - II					
2	a)	Write the quick sort algorithm and discuss its complexity. Sort the list 'EXAMPLE' in alphabetical order using quick sort.	<i>CO2</i>	<i>PO1</i>	12
	b)	Differentiate between DFS and BFS with examples.	<i>CO1</i>	<i>PO2</i>	8
OR					
3	a)	Write the Mergesort algorithm and discuss its efficiency. Sort the array of elements {9,3,7,5,2,4,8,6} using Mergesort.	<i>CO2</i>	<i>PO1</i>	12
	b)	Write and explain topological sort procedure and apply source removal method to find topological order for the following graph.	<i>CO1</i>	<i>PO1</i>	8
UNIT - III					
4	a)	Write single-source shortest path algorithm. Apply the algorithm on the following graph, with vertex "a" as the source.	<i>CO1</i>	<i>PO1</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Write Floyd's algorithm and apply the same to solve the following problem.	CO3	PO1	10															
		OR																		
5	a)	Apply Prims algorithm to find minimal cost spanning tree for the following graph. Also, Write the algorithm.	COI	PO1	10															
	b)	Apply Knapsack algorithm using dynamic programming to find an optimal solution for the given instances: (Capacity of the Knapsack =5). <table border="1" style="margin-left: 20px;"> <tr> <th>Item</th> <th>wt</th> <th>val</th> </tr> <tr> <td>1</td> <td>2</td> <td>12</td> </tr> <tr> <td>2</td> <td>1</td> <td>10</td> </tr> <tr> <td>3</td> <td>3</td> <td>20</td> </tr> <tr> <td>4</td> <td>2</td> <td>15</td> </tr> </table>	Item	wt	val	1	2	12	2	1	10	3	3	20	4	2	15	CO3	PO1	10
Item	wt	val																		
1	2	12																		
2	1	10																		
3	3	20																		
4	2	15																		
		UNIT - IV																		
6	a)	Construct an AVL Tree for the following set of elements: {1, 2, 3, 4, 5, 6, 7}	COI	PO1	6															
	b)	Define Heap and explain the process to construct Heap.	COI	-	6															
	c)	Write Boyer-Moore matcher algorithm. Apply same algorithm to search for the pattern BARBER in the text JIM-SAW-ME-IN-A-BARBERSHOP.	COI	PO1	8															
		UNIT - V																		
7	a)	Use backtracking method to solve subset-sum problem for the instance d=30 and S= {5,10,15,20,25}.	CO3	PO1	4															

	b)	<p>Find the optimal solution for the following Job Assignment problem using branch-and-bound technique.</p> <table border="1"> <thead> <tr> <th></th><th>J1</th><th>J2</th><th>J3</th><th>J4</th></tr> </thead> <tbody> <tr> <td>P1</td><td>9</td><td>2</td><td>7</td><td>8</td></tr> <tr> <td>P2</td><td>6</td><td>4</td><td>3</td><td>7</td></tr> <tr> <td>P3</td><td>5</td><td>8</td><td>1</td><td>8</td></tr> <tr> <td>P4</td><td>7</td><td>6</td><td>9</td><td>4</td></tr> </tbody> </table>		J1	J2	J3	J4	P1	9	2	7	8	P2	6	4	3	7	P3	5	8	1	8	P4	7	6	9	4	CO3	PO1	8
	J1	J2	J3	J4																										
P1	9	2	7	8																										
P2	6	4	3	7																										
P3	5	8	1	8																										
P4	7	6	9	4																										
	c)	<p>Use branch-and-bound technique to find optimal solution for the given Knapsack problem where capacity =10.</p> <table> <thead> <tr> <th>Item</th> <th>wt</th> <th>val</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>4</td> <td>40</td> </tr> <tr> <td>2</td> <td>7</td> <td>42</td> </tr> <tr> <td>3</td> <td>5</td> <td>25</td> </tr> <tr> <td>4</td> <td>3</td> <td>12</td> </tr> </tbody> </table>	Item	wt	val	1	4	40	2	7	42	3	5	25	4	3	12	CO3	PO1	8										
Item	wt	val																												
1	4	40																												
2	7	42																												
3	5	25																												
4	3	12																												
