

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

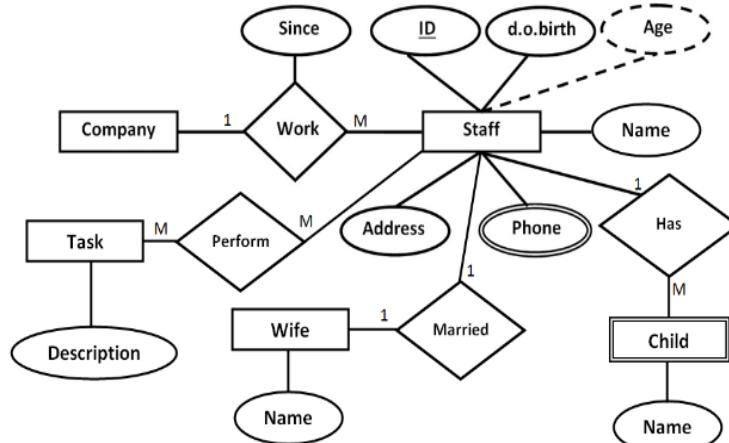
August 2024 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Information Science and Engineering

Duration: 3 hrs.


Course Code: 22IS4PCDBM

Max Marks: 100

Course: Database Management System

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks
1	a)	Make use of Three Schema Architecture to emphasize how Data Independence is achieved in DBMS.	CO1		10
	b)	List the characteristics of DBMS and explain in detail.	CO1		05
	c)	Design a schema diagram for a Payroll Database Application with atleast four schemas and identify the metadata for the same.	CO2	PO1	05
		UNIT - II			
2	a)	Analyze an ER Diagram for Order Database considering the Orders, Customers and Salesman as entities having suitable attributes and relations.	CO2	PO2	10
	b)	Identify the number of tables required to convert the ER diagram to a Relational Database. Justify your answer by mentioning the rules for conversion.	CO2	PO2	10

UNIT - III					
3	a)	Provide the various database modification or update operations with appropriate syntax of Relational DataBase Management System. Also specify types of constraints that may be violated by each of these operations.	CO2	PO2	10
	b)	<p>Consider the following schema for Order Database and Apply the concepts of SQL to solve queries</p> <p>SALESMAN (S_id, Name, City)</p> <p>CUSTOMER (C_id, C_Name, City, Grade, S_id)</p> <p>ORDERS (Ord_No, Ord_Amt, O_Date, C_id, S_id)</p> <p>a) Count the customers with grades above Bangalore's average.</p> <p>b) Find the name and numbers of all salesmen who had more than one customer.</p> <p>c) List all salesmen and indicate those who have and don't have customers in their cities</p> <p>d) Find the salesman who has the customer with the highest amount order.</p> <p>e) Create the above tables with appropriate constraints</p>	CO3	PO4	10
UNIT - IV					
4	a)	<p>Design the relational algebra expression for the following queries using given schema:</p> <p>SAILORS (Sid, Sname, rating, age)</p> <p>BOATS (bid, bname, color)</p> <p>RESERVES (Sid, bid, day)</p> <ol style="list-style-type: none"> Find the names of sailors who have reserved green boat. Find the names of sailors who have reserved all boats. Find the names of sailors who have reserved boat with B_id= 103. Find the colors of boats reserved by Ram. Find the names of the sailors who have reserved a red or green boat. 	CO3	PO4	10
	b)	Design the following Join operations and emphasize their working by choosing a suitable relational database.	CO3	PO4	05
	c)	a) Equi Join b) Natural Join	CO3	PO4	05
		OR			
5	a)	Identify the need for normalization in DBMS and infer with example First, Second and Third Normal Forms.	CO2	PO2	10
	b)	Given a relation R(X,Y,Z,W,P) and Functional Dependency set FD = {X->Y, Y->P and Z->W}, Determine whether the given R is in 3NF. If not convert it into 3NF.	CO2	PO2	10

UNIT - V					
6	a)	Check whether the given schedule is Conflict Serializable or not. S: R1(A), R2(A), R1(B), R2(B), R3(B), W1(A), W2(B)	CO2	PO2	05
	b)	Analyze how the following concepts of concurrency control in DBMS hinders to develop the reliable database systems. a. Dirty Read b. Lost Update c. Non repeatable read d. Incorrect Summary Problem	CO2	PO2	10
	c)	Design and discuss the CAP theorem.	CO1		05
OR					
7	a)	Infer how the 2-phase locking protocol can be utilized for achieving concurrency control in DBMS.	CO1		08
	b)	Analyze the different states of transaction execution with a state transition diagram.	CO2	PO2	05
	c)	Identify the locking scheme which uses the three operations read_lock(X), write_lock(X) and unlock(X) and explain the same.	CO2	PO2	07

B.M.S.C.E. - EVEN SEMESTER 2023-24