

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

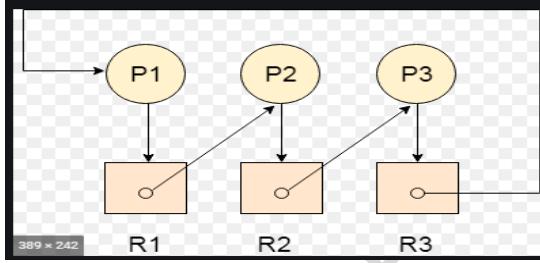
## June 2025 Semester End Main Examinations

**Programme: B.E.**

**Semester: IV**

**Branch: Information Science and Engineering**

**Duration: 3 hrs.**


**Course Code: 22IS4PCOPS**

**Max Marks: 100**

**Course: Operating System**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

|                                                                                                                                                                                                       |    |                                                                                                                                                                                             | <b>UNIT - I</b>                                                                                                                    |            |              |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|----------|
|                                                                                                                                                                                                       |    |                                                                                                                                                                                             | <i>CO</i>                                                                                                                          | <i>PO</i>  | <b>Marks</b> |          |
| <b>Important Note:</b> Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice. | 1  | a)                                                                                                                                                                                          | Summarize the operating system services that ensures efficient operation with respect to user and system with a neat diagram.      | <i>CO1</i> | <b>10</b>    |          |
|                                                                                                                                                                                                       |    | b)                                                                                                                                                                                          | Differentiate between Long term and Short term schedulers.                                                                         | <i>CO1</i> | <b>5</b>     |          |
|                                                                                                                                                                                                       |    | c)                                                                                                                                                                                          | Explain Distributed system with suitable examples.                                                                                 | <i>CO1</i> | <b>5</b>     |          |
|                                                                                                                                                                                                       |    | <b>OR</b>                                                                                                                                                                                   |                                                                                                                                    |            |              |          |
| 2                                                                                                                                                                                                     | a) | Demonstrate the mode of operation where the Operating system can protect itself and other system components with a neat diagram.                                                            | <i>CO2</i>                                                                                                                         | <i>CO1</i> | <b>10</b>    |          |
|                                                                                                                                                                                                       |    | b)                                                                                                                                                                                          | Explain client server computing with a neat diagram.                                                                               | <i>CO1</i> |              | <b>5</b> |
|                                                                                                                                                                                                       |    | c)                                                                                                                                                                                          | Explain the role of an OS with respect to user view and system view?                                                               | <i>CO1</i> |              | <b>5</b> |
|                                                                                                                                                                                                       |    | <b>UNIT - II</b>                                                                                                                                                                            |                                                                                                                                    |            |              |          |
| 3                                                                                                                                                                                                     | a) | State the Reader's Writer's Problem and give a solution for the same using Semaphores. Write the structure for Reader and Writer process                                                    | <i>CO2</i>                                                                                                                         | <i>CO1</i> | <b>10</b>    |          |
|                                                                                                                                                                                                       |    | b)                                                                                                                                                                                          | Summarize the requirements that a critical section problem must satisfy. Illustrate the general structure of a typical process Pi. | <i>CO2</i> | <i>CO1</i>   | <b>5</b> |
|                                                                                                                                                                                                       |    | c)                                                                                                                                                                                          | Explain the benefits of Multithreading.                                                                                            | <i>CO1</i> |              | <b>5</b> |
|                                                                                                                                                                                                       |    | <b>OR</b>                                                                                                                                                                                   |                                                                                                                                    |            |              |          |
| 4                                                                                                                                                                                                     | a) | State the Dining philosopher's problem and give a solution for the same using semaphores. What are the constraints to be met for a philosopher? Also, write the structure of philosopher i. | <i>CO2</i>                                                                                                                         | <i>CO1</i> | <b>10</b>    |          |
|                                                                                                                                                                                                       |    | b)                                                                                                                                                                                          | Differentiate Direct and Indirect communication in IPC.                                                                            | <i>CO1</i> |              | <b>5</b> |

|                   | c)              | Explain the various Process states with a neat diagram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO1       |                 | 5                 |    |           |   |    |           |    |    |    |    |    |    |    |    |    |    |     |                |    |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |     |     |    |
|-------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|-------------------|----|-----------|---|----|-----------|----|----|----|----|----|----|----|----|----|----|-----|----------------|----|---|---|---|---|---|---|---|---|----------------|---|---|---|---|---|---|--|--|--|----------------|---|---|---|---|---|---|--|--|--|----------------|---|---|---|---|---|---|--|--|--|----------------|---|---|---|---|---|---|--|--|--|-----|-----|----|
| <b>UNIT - III</b> |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                 |                   |    |           |   |    |           |    |    |    |    |    |    |    |    |    |    |     |                |    |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |     |     |    |
| 5                 | a)              | <p>Assume we have the following process to execute with one processor.</p> <table border="1"> <thead> <tr> <th>Process</th> <th>Burst time (ms)</th> <th>Arrival time (ms)</th> </tr> </thead> <tbody> <tr> <td>P0</td> <td>75</td> <td>0</td> </tr> <tr> <td>P1</td> <td>40</td> <td>10</td> </tr> <tr> <td>P2</td> <td>25</td> <td>10</td> </tr> <tr> <td>P3</td> <td>30</td> <td>55</td> </tr> <tr> <td>P4</td> <td>45</td> <td>95</td> </tr> </tbody> </table> <p>Suppose the scheduling is RR (with time quantum 10 ms) and SJF scheduling (both pre-emptive and non-pre-emptive).</p> <ol style="list-style-type: none"> <li>Draw the Gantt chart illustrating the execution of the processes.</li> <li>Compute the average waiting time and average turnaround time of the processes for the above scheduling?</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                  | Process   | Burst time (ms) | Arrival time (ms) | P0 | 75        | 0 | P1 | 40        | 10 | P2 | 25 | 10 | P3 | 30 | 55 | P4 | 45 | 95 | CO3 | CO2            | 10 |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |     |     |    |
| Process           | Burst time (ms) | Arrival time (ms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                 |                   |    |           |   |    |           |    |    |    |    |    |    |    |    |    |    |     |                |    |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |     |     |    |
| P0                | 75              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                 |                   |    |           |   |    |           |    |    |    |    |    |    |    |    |    |    |     |                |    |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |     |     |    |
| P1                | 40              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                 |                   |    |           |   |    |           |    |    |    |    |    |    |    |    |    |    |     |                |    |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |     |     |    |
| P2                | 25              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                 |                   |    |           |   |    |           |    |    |    |    |    |    |    |    |    |    |     |                |    |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |     |     |    |
| P3                | 30              | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                 |                   |    |           |   |    |           |    |    |    |    |    |    |    |    |    |    |     |                |    |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |     |     |    |
| P4                | 45              | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                 |                   |    |           |   |    |           |    |    |    |    |    |    |    |    |    |    |     |                |    |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |     |     |    |
|                   | b)              | <p>Check whether the given resource allocation graph is safe or not? Write the corresponding Wait-for-graph for the same.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CO3       | CO2             | 5                 |    |           |   |    |           |    |    |    |    |    |    |    |    |    |    |     |                |    |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |     |     |    |
|                   | c)              | <p>CPU scheduling algorithms must satisfy few <b>scheduling criteria</b>. Elucidate the same.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO1       |                 | 5                 |    |           |   |    |           |    |    |    |    |    |    |    |    |    |    |     |                |    |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |     |     |    |
| <b>OR</b>         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                 |                   |    |           |   |    |           |    |    |    |    |    |    |    |    |    |    |     |                |    |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |     |     |    |
| 6                 | a)              | <p>Consider the following snapshot of a system:</p> <table border="1"> <thead> <tr> <th rowspan="2">Processes</th> <th colspan="3">Allocation</th> <th colspan="3">Max</th> <th colspan="3">Available</th> </tr> <tr> <th>A</th> <th>B</th> <th>C</th> <th>A</th> <th>B</th> <th>C</th> <th>A</th> <th>B</th> <th>C</th> </tr> </thead> <tbody> <tr> <td>P<sub>0</sub></td> <td>1</td> <td>1</td> <td>2</td> <td>4</td> <td>3</td> <td>3</td> <td>2</td> <td>1</td> <td>0</td> </tr> <tr> <td>P<sub>1</sub></td> <td>2</td> <td>1</td> <td>2</td> <td>3</td> <td>2</td> <td>2</td> <td></td> <td></td> <td></td> </tr> <tr> <td>P<sub>2</sub></td> <td>4</td> <td>0</td> <td>1</td> <td>9</td> <td>0</td> <td>2</td> <td></td> <td></td> <td></td> </tr> <tr> <td>P<sub>3</sub></td> <td>0</td> <td>2</td> <td>0</td> <td>7</td> <td>5</td> <td>3</td> <td></td> <td></td> <td></td> </tr> <tr> <td>P<sub>4</sub></td> <td>1</td> <td>1</td> <td>2</td> <td>1</td> <td>1</td> <td>2</td> <td></td> <td></td> <td></td> </tr> </tbody> </table> <ol style="list-style-type: none"> <li>Calculate the content of the need matrix?</li> <li>Is the system in a safe state?</li> <li>Determine the total amount of resources of each type?</li> </ol> | Processes | Allocation      |                   |    | Max       |   |    | Available |    |    | A  | B  | C  | A  | B  | C  | A  | B  | C   | P <sub>0</sub> | 1  | 1 | 2 | 4 | 3 | 3 | 2 | 1 | 0 | P <sub>1</sub> | 2 | 1 | 2 | 3 | 2 | 2 |  |  |  | P <sub>2</sub> | 4 | 0 | 1 | 9 | 0 | 2 |  |  |  | P <sub>3</sub> | 0 | 2 | 0 | 7 | 5 | 3 |  |  |  | P <sub>4</sub> | 1 | 1 | 2 | 1 | 1 | 2 |  |  |  | CO3 | CO2 | 10 |
| Processes         | Allocation      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | Max             |                   |    | Available |   |    |           |    |    |    |    |    |    |    |    |    |    |     |                |    |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |     |     |    |
|                   | A               | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C         | A               | B                 | C  | A         | B | C  |           |    |    |    |    |    |    |    |    |    |    |     |                |    |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |     |     |    |
| P <sub>0</sub>    | 1               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2         | 4               | 3                 | 3  | 2         | 1 | 0  |           |    |    |    |    |    |    |    |    |    |    |     |                |    |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |     |     |    |
| P <sub>1</sub>    | 2               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2         | 3               | 2                 | 2  |           |   |    |           |    |    |    |    |    |    |    |    |    |    |     |                |    |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |     |     |    |
| P <sub>2</sub>    | 4               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1         | 9               | 0                 | 2  |           |   |    |           |    |    |    |    |    |    |    |    |    |    |     |                |    |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |     |     |    |
| P <sub>3</sub>    | 0               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0         | 7               | 5                 | 3  |           |   |    |           |    |    |    |    |    |    |    |    |    |    |     |                |    |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |     |     |    |
| P <sub>4</sub>    | 1               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2         | 1               | 1                 | 2  |           |   |    |           |    |    |    |    |    |    |    |    |    |    |     |                |    |   |   |   |   |   |   |   |   |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |                |   |   |   |   |   |   |  |  |  |     |     |    |

|    |    |                                                                                                                                                                                                                                                                                                           |     |     |    |
|----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|
|    | b) | State the advantages and disadvantages of FCFS and SJF Scheduling algorithm.                                                                                                                                                                                                                              | CO1 |     | 6  |
|    | c) | Describe the necessary conditions for a deadlock situation to arise in a system.                                                                                                                                                                                                                          | CO1 |     | 4  |
|    |    | <b>UNIT - IV</b>                                                                                                                                                                                                                                                                                          |     |     |    |
| 7  | a) | Given page reference string:<br>1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6<br>Compare the number of page faults for LRU and Optimal page replacement algorithm.                                                                                                                                              | CO4 | CO2 | 10 |
|    | b) | Elucidate Hashed Page table and Inverted Page table.                                                                                                                                                                                                                                                      | CO1 |     | 10 |
|    |    | <b>OR</b>                                                                                                                                                                                                                                                                                                 |     |     |    |
| 8  | a) | Consider the Pages referenced by the CPU in the order are <b>6, 7, 8, 9, 6, 7, 1, 6, 7, 8, 9, 1, 7, 9, 6</b> . Given the frame size 3. Find the number of Page Faults for the following Page replacement algorithms. Also Compare their performance.<br><b>(i) Least Recently Used (LRU) (ii) Optimal</b> | CO4 | CO2 | 10 |
|    | b) | Explain Thrashing in Operating System.                                                                                                                                                                                                                                                                    | CO1 |     | 5  |
|    | c) | Illustrate how Segmentation is handled in Main memory with a neat diagram.                                                                                                                                                                                                                                | CO1 |     | 5  |
|    |    | <b>UNIT - V</b>                                                                                                                                                                                                                                                                                           |     |     |    |
| 9  | a) | If the Disk requests are arrived in the order 82,170,43,140,24,16,190 then what will the total head movement if the OS use SCAN and C-SCAN disk scheduling algorithm if current head position is 50.                                                                                                      | CO4 | CO2 | 10 |
|    | b) | Explain the different levels of directory structures in Operating System.                                                                                                                                                                                                                                 | CO1 |     | 10 |
|    |    | <b>OR</b>                                                                                                                                                                                                                                                                                                 |     |     |    |
| 10 | a) | Illustrate LOOK and C-LOOK scheduling algorithms with a request queue 98, 183, 37, 122, 14, 124, 65, 67. Disk drive is numbered from 0-199 with a total of 200 cylinders. Currently, Head pointer is at 53.                                                                                               | CO4 | CO2 | 10 |
|    | b) | Explain Linked Free space management scheme.                                                                                                                                                                                                                                                              | CO1 |     | 5  |
|    | c) | List and explain any five file attributes.                                                                                                                                                                                                                                                                | CO1 |     | 5  |

\*\*\*\*\*