

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2023 Semester End Main Examinations

Programme: B.E

Semester: IV

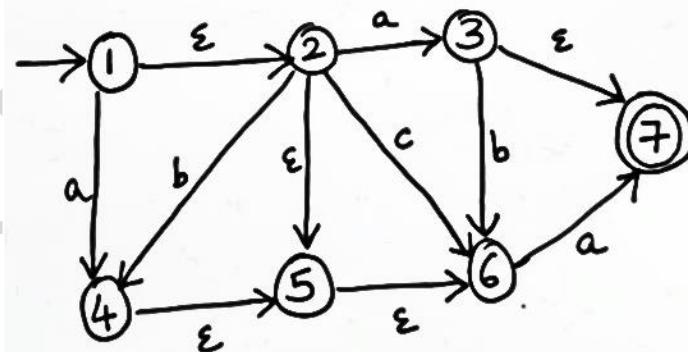
Branch: Information Science and Engineering

Duration: 3 hrs.

Course Code: 19IS4PCTFC

Max Marks: 100

Course: Theoretical Foundations of Computations

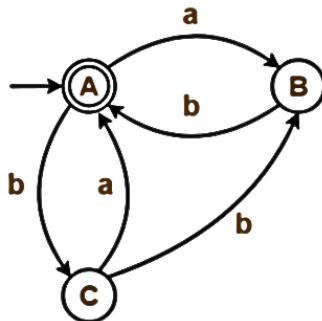

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Design Deterministic Finite Automata for the following languages with $\Sigma = \{0,1\}$ 10

- i) $L_1 = \{0^n10^m \mid n \geq 2 \text{ and } m \geq 3\}$
- ii) Strings where three consecutive 1's is not allowed
- iii) Strings beginning with a '1', that when interpreted as a binary integer is divisible by 5

b) Define ϵ -closure of a state. Convert the following ϵ -NFA to DFA. 10


UNIT - II

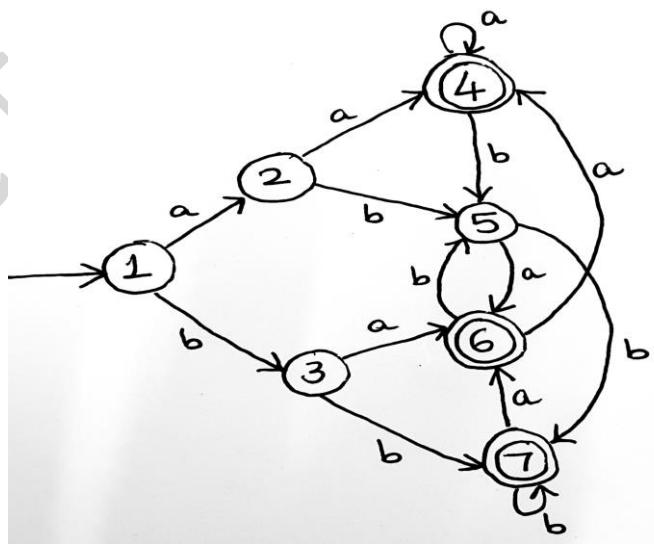
2 a) Obtain Regular Expressions for the following languages 08

- i) $L_1 = \{ \text{ Strings of a's and b's whose length is either even or multiple of 3} \}$
- ii) Language L_2 whose $\Sigma = \{0,1\}$ and which includes strings with two or more letters but beginning and ending with same letter
- iii) $L_3 = \{ \text{ Strings of 0's and 1's with atmost one pair of consecutive 0's } \}$
- iv) Language L_4 whose $\Sigma = \{a,b,c\}$ and which includes strings with atleast one a and atleast one b

b) Using pumping lemma, prove that the language $L = \{0^i1^j : i \neq j\}$ is not regular. **05**

c) Transform the following DFA to its equivalent regular expression **07**

OR


3 a) Provide English description to identify the language for the following regular expressions: **06**

- i) $(00)^*0(11)^*$
- ii) $(1+\epsilon)(01)^*(0+\epsilon)$
- iii) $(0+1)^*0(0+1)(0+1)$

b) Construct ϵ -NFA for the following regular expressions **06**

- i) $(0^*2^*) (10)^*$
- ii) $b+a^*(b+a)^*$

c) Minimize the given DFA using table filling algorithm. **08**

UNIT - III

4 a) Design Context-free grammar (CFG) for the following languages **10**

- i) $L = \{a^n b^m c^k \mid m \geq 0, n \geq 0 \text{ and } n+2m=k\}$
- ii) Language with strings of balanced parenthesis. Assume $\Sigma = \{ (,), [,], \{, \} \}$
- iii) $L = \{0^n w w^r 1^n \mid n \geq 1 \text{ and } w = \{0,1\}^*\}$

b) Define Greibach Normal Form (GNF). Convert the grammar, whose productions are given below to GNF **10**

$S \rightarrow XA|BB$
 $B \rightarrow b|SB$
 $X \rightarrow b$
 $A \rightarrow a$

OR

5 a) Define Chomsky Normal Form (CNF). Convert the following grammar to CNF. **10**

$S \rightarrow AACD, A \rightarrow aAb | \epsilon, C \rightarrow cC | a, D \rightarrow aDa | bDb | \epsilon$

b) Show that the following grammar is ambiguous. **05**

$S \rightarrow a | Sa | bSS | SSb | SbS$

c) Explain any two applications of Context Free Grammars. **05**

UNIT - IV

6 a) Design a Push Down Automata (PDA) to recognize the Context free language **08**

$L = \{a^n b^{n+m} c^m \mid n \geq 1, m \geq 1\}$

b) Define Deterministic and Non-deterministic PDA. Explain with a suitable example. **05**

c) Obtain CFG for the PDA $M = (\{q_0, q_1\}, \{a, b\}, \{Z, A, B\}, \delta, q_0, Z, \{q_0\})$ **07**
 where δ is

defined by:

$$\begin{array}{ll} \delta(q_0, a, Z) = (q_1, AZ) ; & \delta(q_0, b, Z) = (q_1, BZ) ; \\ \delta(q_1, a, A) = (q_1, AA) ; & \delta(q_1, b, B) = (q_1, BB) ; \\ \delta(q_1, a, B) = (q_1, \epsilon) ; & \delta(q_1, b, A) = (q_1, \epsilon) ; \quad \delta(q_1, \epsilon, Z) = (q_0, \epsilon) \end{array}$$

UNIT - V

7 a) Design a Turing Machine (TM) for the Language $L = \{0^n 1^n 2^n \mid n \geq 1\}$ **10**

Provide instantaneous description for acceptance of the string “000111222” by the TM.

b) Suppose that a tape contains pair of integers m, k in unary form separated by a single ‘x’. Design a Turing Machine to replace its input by the value of the function $f(m, k) = m + k$.

c) Check whether the following instance of Post Correspondence Problem has a solution. **04**

List A: [ab, bba, a] and List B: [aa, bb, baa]
