

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Semester: IV

Branch: Information Science and Engineering

Duration: 3 hrs.

Course Code: 22IS4PCTFC

Max Marks: 100

Course: Theoretical Foundations of Computation

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Construct DFA for the following Languages:</p> <p>i.) $L = \{w \mid w \in \{a,b\}^* \text{ and } n_a(w) \bmod 3 = n_b(w) \bmod 3\}$</p> <p>ii.) $L = \{1w0 \mid w \text{ is the set of strings with 0's and 1's}\}$</p> <p>iii.) $L = \{w \mid w \text{ is the set of binary strings divisible by 5}\}$</p>	CO3	PO3	10
	b)	<p>Define E-closure and write E-Closures for all states in the ϵ-NFA given below:</p>	CO1	PO1	05
	c)	<p>Obtain equivalent DFA for the following ϵ-NFA.</p>	CO2	PO2	05
OR					
2	a)	<p>Obtain equivalent DFA for the given NFA.</p>	CO1	PO1	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Identify the language accepted by the following NFA. List any 5 strings accepted by the following NFA.</p>	CO2	PO2	04
	c)	<p>Minimize the given DFA using Table Filling Method.</p>	CO1	PO1	09
UNIT - II					
3	a)	<p>Obtain Finite Automata for the following regular expressions.</p> <ol style="list-style-type: none"> $(0+1)^*(00+10+11)$ $(a+b)^*ab + ba(a+b)^*$ $(a+b)^*aa(a+b)^*$ 	CO2	PO2	06
	b)	<p>Prove that the given Language is not regular.</p> $L = \{ a^n b^n \mid \text{where } n \geq 1 \}$	CO1	PO1	06
	c)	<p>Compose regular expressions for the following languages:</p> <ol style="list-style-type: none"> Set of all strings of a's and b's of odd length. $L = \{ vvv \mid v \text{ and } v \in \{a,b\}^* \text{ and } v =2 \}$ Set of strings that do not end with 01 over $\{0,1\}^*$ Accept strings with two or more letters but beginning and ending with same letter, $\Sigma = \{0,1\}$ 	CO2	PO2	08
OR					
4	a)	<p>Provide English description to identify the language for the following:</p> <ol style="list-style-type: none"> $(a+b)^*(aa+bb)$ $(\epsilon+a+b)(\epsilon+a+b)(\epsilon+a+b)$ $0(10+0)^*$ 	CO2	PO2	06
	b)	<p>Obtain regular expression for the following FA using state elimination method.</p>	CO2	PO2	06

	c)	State and prove pumping lemma theorem for regular Languages. Using the same, prove that the language $L=\{1^n \mid n \text{ is a prime number}\}$ is not regular.	CO1	PO1	08
		UNIT III			
5	a)	Convert the given Grammar to CNF: $S \rightarrow ABC \mid BaB$ $A \rightarrow aA \mid BaC \mid aaa$ $B \rightarrow bBb \mid a \mid D$ $C \rightarrow CA \mid AC$ $D \rightarrow \epsilon$	CO1	PO1	10
	b)	Derive Context Free Grammar for the following languages: i.) $L(G) = \{a^m b^n \mid m \geq 0 \text{ and } n > 0\}$ ii.) $L(G) = \{w \mid w \in \{0, 1, 2\}^* \text{ and is a palindrome}\}$	CO3	PO3	04
	c)	Determine if the following grammar is ambiguous or not. Provide leftmost and rightmost derivations for the string “aabbba”. Write corresponding parse trees. $S \rightarrow AS \mid \epsilon$ $A \rightarrow aa \mid ab \mid ba \mid bb$	CO2	PO2	06
		UNIT - IV			
6	a)	Write the necessary conditions with suitable examples to determine if the PDA is deterministic or non-deterministic.	CO1	PO1	04
	b)	Design a PDA to accept the language $L = \{a^{m+n}b^m c^n \mid m \text{ and } n \text{ are } \geq 1\}$ by final state. Write the sequence of moves using instantaneous description for acceptance of any string.	CO3	PO3	10
	c)	Convert the following grammar to PDA. $S \rightarrow aABC$ $A \rightarrow aB \mid a$ $B \rightarrow bA \mid b$ $C \rightarrow a$	CO2	PO2	06
		UNIT - V			
7	a)	Design Turing Machine to accept the language $L= \{0^n 1^n 2^n \mid n \geq 1\}$.	CO3	PO3	10
	b)	Construct a Turing machine to accept the Language of aba over $\Sigma = \{a, b\}$.	CO3	PO3	05
	c)	Is it possible for a Turing machine to recognize any language? Justify your answer.	CO2	PO2	05
