

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

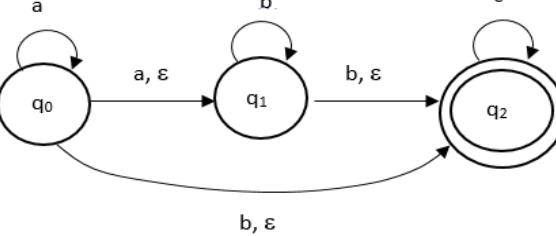
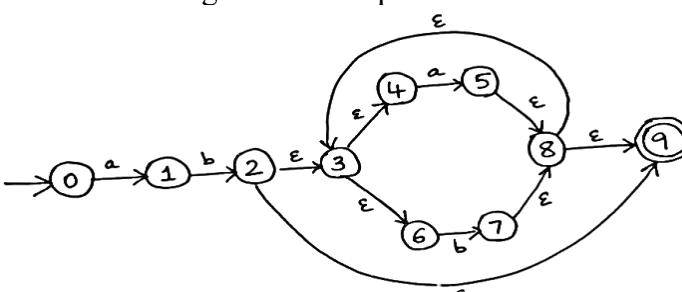
Autonomous Institute Affiliated to VTU

## August 2024 Semester End Main Examinations

**Programme: B.E.**

**Branch: Information Science and Engineering**

**Course Code: 22IS4PCTFC**



**Course: Theoretical Foundation of Computation**

**Semester: IV**

**Duration: 3 hrs.**

**Max Marks: 100**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

|                 |             | UNIT - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO       | PO  | Marks     |                 |           |         |   |             |         |      |           |         |     |     |           |
|-----------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|-----------|-----------------|-----------|---------|---|-------------|---------|------|-----------|---------|-----|-----|-----------|
| 1               | a)          | <p>Obtain DFA for the following languages with <math>\Sigma = \{a,b\}</math></p> <p>(i) All strings with even number of a's and even number of b's.</p> <p>(ii) All strings that do not contain substring 'aa'.</p> <p>(iii) All strings that begin and end with different letters, 'a' and 'b'.</p>                                                                                                                                                                                  | CO3      | PO3 | <b>06</b> |                 |           |         |   |             |         |      |           |         |     |     |           |
|                 | b)          | <p>Convert the following NFA to equivalent DFA.</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td><math>\delta</math></td> <td>0</td> <td>1</td> </tr> <tr> <td><math>\rightarrow p</math></td> <td><math>\{p,q\}</math></td> <td><math>\{p\}</math></td> </tr> <tr> <td>q</td> <td><math>\emptyset</math></td> <td><math>\{r\}</math></td> </tr> <tr> <td><math>*r</math></td> <td><math>\{p,r\}</math></td> <td><math>\{q\}</math></td> </tr> </table> | $\delta$ | 0   | 1         | $\rightarrow p$ | $\{p,q\}$ | $\{p\}$ | q | $\emptyset$ | $\{r\}$ | $*r$ | $\{p,r\}$ | $\{q\}$ | CO1 | PO1 | <b>08</b> |
| $\delta$        | 0           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |     |           |                 |           |         |   |             |         |      |           |         |     |     |           |
| $\rightarrow p$ | $\{p,q\}$   | $\{p\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |     |           |                 |           |         |   |             |         |      |           |         |     |     |           |
| q               | $\emptyset$ | $\{r\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |     |           |                 |           |         |   |             |         |      |           |         |     |     |           |
| $*r$            | $\{p,r\}$   | $\{q\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |     |           |                 |           |         |   |             |         |      |           |         |     |     |           |
|                 | c)          | <p>Provide definitions for <math>\epsilon</math>-NFA and <math>\epsilon</math>-CLOSURE. Write <math>\epsilon</math>-CLOSURE(<math>q</math>) considering each <math>q \in Q</math> for the given automaton.</p>                                                                                                                                                                                    | CO1      | PO1 | <b>06</b> |                 |           |         |   |             |         |      |           |         |     |     |           |
|                 |             | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |           |                 |           |         |   |             |         |      |           |         |     |     |           |
| 2               | a)          | Convert the following $\epsilon$ -NFA to equivalent DFA.                                                                                                                                                                                                                                                                                                                                                                                                                              | CO1      | PO1 | <b>10</b> |                 |           |         |   |             |         |      |           |         |     |     |           |
|                 |             |                                                                                                                                                                                                                                                                                                                                                                                                   |          |     |           |                 |           |         |   |             |         |      |           |         |     |     |           |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

|          | b) | <p>Minimize the following finite automaton.</p> <table border="1"> <tr> <th><math>\delta</math></th><th>a</th><th>b</th></tr> <tr> <td>→ A</td><td>B</td><td>F</td></tr> <tr> <td>B</td><td>G</td><td>C</td></tr> <tr> <td>*C</td><td>A</td><td>C</td></tr> <tr> <td>D</td><td>C</td><td>G</td></tr> <tr> <td>E</td><td>H</td><td>F</td></tr> <tr> <td>F</td><td>C</td><td>G</td></tr> <tr> <td>G</td><td>G</td><td>E</td></tr> <tr> <td>H</td><td>G</td><td>C</td></tr> </table> | $\delta$ | a   | b         | → A | B | F | B | G | C | *C | A | C | D | C | G | E | H | F | F | C | G | G | G | E | H | G | C | CO1 | PO1 | <b>10</b> |
|----------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|-----------|-----|---|---|---|---|---|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|-----|-----------|
| $\delta$ | a  | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |     |           |     |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |           |
| → A      | B  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |     |           |     |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |           |
| B        | G  | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |     |           |     |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |           |
| *C       | A  | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |     |           |     |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |           |
| D        | C  | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |     |           |     |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |           |
| E        | H  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |     |           |     |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |           |
| F        | C  | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |     |           |     |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |           |
| G        | G  | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |     |           |     |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |           |
| H        | G  | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |     |           |     |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |           |
|          |    | <b>UNIT - II</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |     |           |     |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |           |
| 3        | a) | <p>Obtain <math>\epsilon</math>-NFA for the regular expression</p> <p>(i) <math>(a+b)^* aba (a+b)^*</math><br/> (ii) <math>a^*b + (ab)^*</math></p>                                                                                                                                                                                                                                                                                                                               | CO1      | PO1 | <b>06</b> |     |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |           |
|          | b) | Show that $L=\{w \mid w \in \{a,b\}^* \text{ and } n_a(w) < n_b(w)\}$ is not regular using Pumping Lemma, where $n_a(w)$ denotes number of a's and $n_b(w)$ denotes number of b's.                                                                                                                                                                                                                                                                                                | CO2      | PO2 | <b>08</b> |     |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |           |
|          | c) | <p>Write regular expressions for the following languages:</p> <p>(i) Set of strings of a's and b's ending with either 'a' or 'bb'.</p> <p>(ii) Set of strings of a's and b's having substring 'ab'</p> <p>(iii) Set of strings consisting of even number of a's followed by odd number of b's.</p>                                                                                                                                                                                | CO2      | PO2 | <b>06</b> |     |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |           |
|          |    | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |     |           |     |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |           |
| 4        | a) | <p>Obtain regular expression for the following finite automata by State elimination method.</p>                                                                                                                                                                                                                                                                                                                                                                                   | CO1      | PO1 | <b>10</b> |     |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |           |
|          | b) | <p>State and prove Pumping Lemma for regular languages. Using the same, show that the language of palindromes is not regular.</p>                                                                                                                                                                                                                                                                                                                                                 | CO2      | PO2 | <b>10</b> |     |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |           |
|          |    | <b>UNIT - III</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |     |           |     |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |           |
| 5        | a) | <p>Obtain grammar to generate the following languages:</p> <p>(i) <math>L= \{ 0^m 1^m 2^n \mid m \geq 1 \text{ and } n \geq 0 \}</math><br/> (ii) <math>L= \{ w c w^R \mid w \in \{a,b\}^*, \Sigma=\{a,b,c\} \}</math></p>                                                                                                                                                                                                                                                        | CO3      | PO3 | <b>06</b> |     |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |           |
|          | b) | <p>Show that the following grammar is ambiguous for the string aabbab.</p> <p><math>S \rightarrow aB \mid bA</math><br/> <math>A \rightarrow aS \mid bAA \mid a</math><br/> <math>B \rightarrow bS \mid aBB \mid b</math></p>                                                                                                                                                                                                                                                     | CO2      | PO2 | <b>05</b> |     |   |   |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |     |     |           |

|   |    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |     |           |
|---|----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|   |    | c) | <p>Begin with the grammar</p> $S \rightarrow ABC \mid BaB$ $A \rightarrow aA \mid BaC \mid aaa$ $B \rightarrow bBb \mid a \mid D$ $C \rightarrow CA \mid AC$ $D \rightarrow \epsilon$ <p>(i) Eliminate <math>\epsilon</math>-productions.<br/> (ii) Eliminate any unit productions in the resulting grammar.<br/> (iii) Eliminate any useless symbols in the resulting grammar.<br/> (iv) Put the resulting grammar into Chomsky Normal Form.</p> | CO1 | PO1 | <b>09</b> |
|   |    |    | <b>UNIT - IV</b>                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |     |           |
| 6 | a) |    | <p>Design Pushdown Automata for the language to accept string of balanced parenthesis by final state. The parenthesis to be considered are: (, ), [ , ]. Show instantaneous description for the string [( )]. Find out whether the PDA is deterministic or not.</p>                                                                                                                                                                               | CO3 | PO3 | <b>12</b> |
|   | b) |    | <p>Obtain Pushdown Automata for the grammar:</p> $S \rightarrow aABC$ $A \rightarrow aB \mid a$ $B \rightarrow bA \mid b$ $C \rightarrow a$                                                                                                                                                                                                                                                                                                       | CO1 | PO1 | <b>08</b> |
|   |    |    | <b>UNIT - V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |     |           |
| 7 | a) |    | <p>Design Turing Machine to accept the language <math>L(M) = \{0^n 1^n 2^n \mid n \geq 1\}</math>. Show instantaneous description for 001122.</p>                                                                                                                                                                                                                                                                                                 | CO3 | PO3 | <b>12</b> |
|   | b) |    | <p>Let x and y be two positive integers considered as unary numbers over <math>\{1\}^+</math>. Obtain Turing Machine to perform <math>x+y</math>.</p>                                                                                                                                                                                                                                                                                             | CO2 | PO2 | <b>08</b> |

\*\*\*\*\*