

B.M.S. College of Engineering, Bengaluru-560019

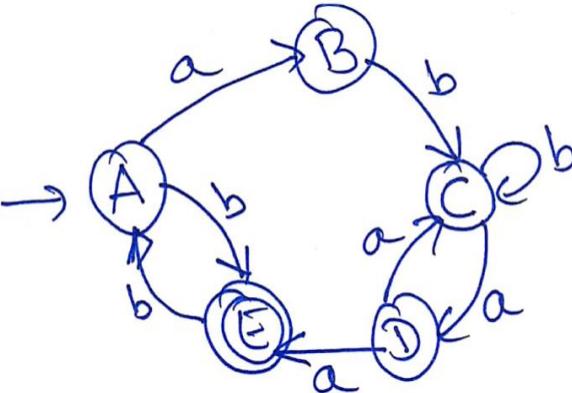
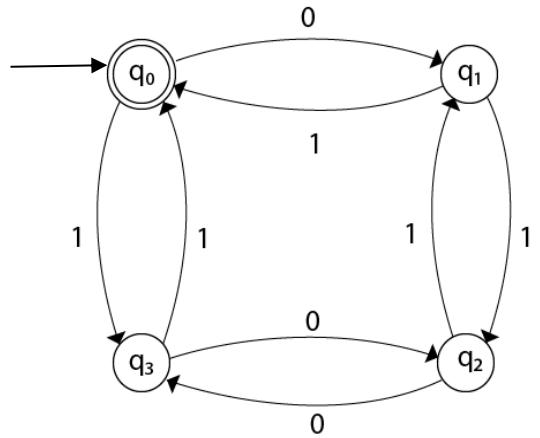
Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Information Science and Engineering



Duration: 3 hrs.

Course Code: 22IS4PCTFC

Max Marks: 100

Course: Theoretical Foundations of Computation

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	CO	PO	Marks
1	a)	<p>For the NFA shown below, using the subset construction draw the equivalent DFA. Find a minimum state DFA accepting the same language.</p>	CO2	PO2	10
	b)	<p>Design DFA for the languages over $\{a,b\}$</p> <p>(i) $L = \{ab^5wb^2 : w \in \{a,b\}^*\}$</p> <p>(ii) $L = \{w : \text{String beginning and ending with the same character}\}$</p>	CO3	PO3	06
	c)	<p>Define extended transition function(δ^*) for NFA. Find $\delta^*(q_0, 0101)$ for the following NFA.</p>	CO1	PO1	04

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

OR																																
2	a)	<p>Consider the following ϵ-NFA.</p> <p>(a) Compute the ϵ-closure of each state.</p> <p>(b) Convert the automaton to a DFA.</p> <table style="margin-left: auto; margin-right: auto;"> <tr> <td style="text-align: center;">δ</td><td style="text-align: center;">ϵ</td><td style="text-align: center;">a</td><td style="text-align: center;">b</td><td style="text-align: center;">c</td></tr> <tr> <td style="text-align: center;">$\rightarrow p$</td><td style="text-align: center;">Φ</td><td style="text-align: center;">$\{p\}$</td><td style="text-align: center;">$\{q\}$</td><td style="text-align: center;">$\{r\}$</td></tr> <tr> <td style="text-align: center;">q</td><td style="text-align: center;">$\{p\}$</td><td style="text-align: center;">$\{q\}$</td><td style="text-align: center;">$\{r\}$</td><td style="text-align: center;">Φ</td></tr> <tr> <td style="text-align: center;">$*r$</td><td style="text-align: center;">$\{q\}$</td><td style="text-align: center;">$\{r\}$</td><td style="text-align: center;">Φ</td><td style="text-align: center;">$\{p\}$</td></tr> </table>	δ	ϵ	a	b	c	$\rightarrow p$	Φ	$\{p\}$	$\{q\}$	$\{r\}$	q	$\{p\}$	$\{q\}$	$\{r\}$	Φ	$*r$	$\{q\}$	$\{r\}$	Φ	$\{p\}$	CO2	PO2	08							
δ	ϵ	a	b	c																												
$\rightarrow p$	Φ	$\{p\}$	$\{q\}$	$\{r\}$																												
q	$\{p\}$	$\{q\}$	$\{r\}$	Φ																												
$*r$	$\{q\}$	$\{r\}$	Φ	$\{p\}$																												
	b)	<p>Minimize the given DFA using table filling algorithm.</p> <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td></td><td style="text-align: center;">0</td><td style="text-align: center;">1</td></tr> <tr> <td style="text-align: center;">$\rightarrow A$</td><td style="text-align: center;">B</td><td style="text-align: center;">A</td></tr> <tr> <td style="text-align: center;">B</td><td style="text-align: center;">A</td><td style="text-align: center;">C</td></tr> <tr> <td style="text-align: center;">C</td><td style="text-align: center;">D</td><td style="text-align: center;">B</td></tr> <tr> <td style="text-align: center;">$*D$</td><td style="text-align: center;">D</td><td style="text-align: center;">A</td></tr> <tr> <td style="text-align: center;">E</td><td style="text-align: center;">D</td><td style="text-align: center;">F</td></tr> <tr> <td style="text-align: center;">F</td><td style="text-align: center;">G</td><td style="text-align: center;">E</td></tr> <tr> <td style="text-align: center;">G</td><td style="text-align: center;">F</td><td style="text-align: center;">G</td></tr> <tr> <td style="text-align: center;">H</td><td style="text-align: center;">G</td><td style="text-align: center;">D</td></tr> </table>		0	1	$\rightarrow A$	B	A	B	A	C	C	D	B	$*D$	D	A	E	D	F	F	G	E	G	F	G	H	G	D	CO1	PO1	08
	0	1																														
$\rightarrow A$	B	A																														
B	A	C																														
C	D	B																														
$*D$	D	A																														
E	D	F																														
F	G	E																														
G	F	G																														
H	G	D																														
	c)	<p>Design an NFA with no more than five states for the set $\{abab^n : n > 0\} \cup \{aba^n : n \geq 0\}$.</p>	CO3	PO3	04																											
UNIT - II																																
3	a)	<p>Consider regular expressions</p> <p>i. $(a+b)^*ab(a+b)^*$</p> <p>ii. $a^*(a+b)b^*$</p> <p>Construct ϵ-NFA for these regular expression</p>	CO1	PO1	06																											
	b)	<p>Derive Regular expressions for the following languages.</p> <p>i) Strings of a's and b's with length not more than four</p> <p>ii) Strings of 0's and 1's with odd number of 1's.</p>	CO2	PO2	06																											
	c)	<p>Using Pumping Lemma show that the following languages are not regular.</p> <p>(i) $\{0^n : n \text{ is a perfect square}\}$</p> <p>(ii) $\{0^n 1^m : m \geq n\}$.</p>	CO2	PO2	08																											
OR																																
4	a)	<p>Convert the following automata to Regular Expression using state elimination method</p>	CO2	PO2	08																											
	b)	<p>Describe the language represented by the following regular expressions –</p> <p>i) $(a+b)^* (aa+ab+ba)$</p> <p>ii) $a(a+b)^* b+b (a+b)^* a$</p>	CO2	PO2	06																											

		c) State and prove pumping lemma for regular languages.	CO1	PO2	06
		UNIT - III			
5	a)	Transform the grammar with the following productions to Chomsky Normal Form. $S \rightarrow ABaC \mid Eda \mid dE$ $A \rightarrow BC \mid Ed$ $B \rightarrow B \mid \epsilon \mid Ea$ $C \rightarrow D \mid \epsilon$ $D \rightarrow d$ $E \rightarrow aE \mid dFE$ $F \rightarrow a$	CO2	PO2	08
	b)	Define ambiguity in grammar, RMD and LMD. Prove that the following grammar is ambiguous. $S \rightarrow S(E) \mid E$ $E \rightarrow (S)E \mid 0 \mid 1 \mid \epsilon$	CO2	PO2	07
	c)	Construct CFG for the following languages $L1 = \{ a^n b^m c^k \mid n+2m = k \text{ for } n \geq 0, m \geq 0 \}$ $L2 = \{ a^m b^n aba \mid n = m, m \geq 0, n \geq 0 \}$	CO3	PO3	05
		UNIT - IV			
6	a)	Consider the PDA defined by $M = (\{q_0, q_1, q_2\}, \{a, b\}, \{A, z\}, \delta, q_0, z, \{q_2\})$, with transitions $\delta(q_0, a, z) = (q_0, Az)$ $\delta(q_0, a, A) = (q_0, AA)$ $\delta(q_0, b, A) = (q_1, \epsilon)$ $\delta(q_1, b, A) = (q_1, \epsilon)$ $\delta(q_1, \epsilon, z) = (q_2, \epsilon)$ a) Find a context-free grammar for the above PDA b) Derive the string (aaabbb) from the constructed CFG	CO3	PO3	10
	b)	Define Non-deterministic PDA. Design a PDA to accept the language $L = \{ a^i b^j c^k : i+j = k, i \geq 0, j \geq 0 \}$. Show the instantaneous description for the input String abbccc .	CO3	PO3	10
		UNIT - V			
7	a)	Define Turing Machine. Design Turing Machine to accept $L = \{ ww^R \mid w \in \{a, b\}^* \}$. Using Instantaneous Descriptions show that the string abaaba is accepted by the Turing Machine.	CO2	PO2	10
	b)	Let x and y are two positive integers represented using unary notation. Design a Turing Machine that computes the function $f(x, y)$, where $x, y \in 1^+$ $f(x, y) = \begin{cases} x - y & \text{if } x > y \\ y - x & \text{if } y > x \\ 0 & \text{if } x = y \end{cases}$ Use Instantaneous Descriptions to show operation on $x=11111$ and $y=11$.	CO3	PO3	10
