

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

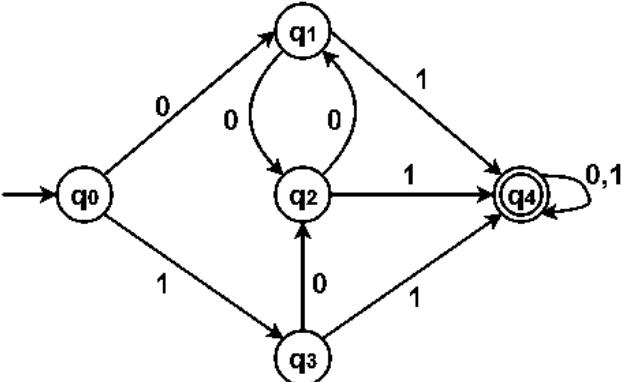
Programme: B.E.

Branch: Information Science and Engineering

Course Code: 23IS4ESTFC

Course: Theoretical Foundations of Computation

Semester: IV


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT – I			CO	PO	Marks																								
1	a)	Differentiate DFA, NFA and ϵ -NFA.				CO1	PO1	05																								
	b)	Design DFA to accept (i) Set of all strings over {a, b} in which number of a's are odd and number of b's is even ii) $L = \{ w \mid w \text{ is the set of binary strings divisible by 5} \}$				CO2	PO1	07																								
	c)	Convert the following NFA to DFA <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>δ</td> <td>0</td> <td>1</td> </tr> <tr> <td>$\rightarrow Q_0$</td> <td>Q_1</td> <td>Q_2</td> </tr> <tr> <td>Q_1</td> <td>Q_1</td> <td>$\{Q_1, Q_3\}$</td> </tr> <tr> <td>Q_2</td> <td>Φ</td> <td>Φ</td> </tr> <tr> <td>$*Q_3$</td> <td>$\{Q_0, Q_3\}$</td> <td>Q_3</td> </tr> </table>			δ	0	1	$\rightarrow Q_0$	Q_1	Q_2	Q_1	Q_1	$\{Q_1, Q_3\}$	Q_2	Φ	Φ	$*Q_3$	$\{Q_0, Q_3\}$	Q_3		CO2	PO2	08									
δ	0	1																														
$\rightarrow Q_0$	Q_1	Q_2																														
Q_1	Q_1	$\{Q_1, Q_3\}$																														
Q_2	Φ	Φ																														
$*Q_3$	$\{Q_0, Q_3\}$	Q_3																														
		OR																														
2	a)	Define ϵ -Closure. Find ϵ -Closure of each state and obtain equivalent DFA for the following ϵ -NFA.						CO1																								
		<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>δ</td> <td>ϵ</td> <td>a</td> <td>b</td> </tr> <tr> <td>$\rightarrow 1$</td> <td>2</td> <td>Φ</td> <td>Φ</td> </tr> <tr> <td>2</td> <td>Φ</td> <td>3,4</td> <td>Φ</td> </tr> <tr> <td>3</td> <td>2</td> <td>Φ</td> <td>4</td> </tr> <tr> <td>4</td> <td>3,5</td> <td>5</td> <td>Φ</td> </tr> <tr> <td>$*5$</td> <td>Φ</td> <td>Φ</td> <td>Φ</td> </tr> </table>						δ	ϵ	a	b	$\rightarrow 1$	2	Φ	Φ	2	Φ	3,4	Φ	3	2	Φ	4	4	3,5	5	Φ	$*5$	Φ	Φ	Φ	PO1
δ	ϵ	a	b																													
$\rightarrow 1$	2	Φ	Φ																													
2	Φ	3,4	Φ																													
3	2	Φ	4																													
4	3,5	5	Φ																													
$*5$	Φ	Φ	Φ																													
								10																								

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Minimize the following DFA. Show all the steps in detail.	CO2	PO2	10
UNIT – II					
3	a)	Compose regular expressions for the following languages: i. Set of all strings of a's and b's that do not end with ab. ii. Set of all strings with two or more letters but beginning and ending with different letter, $\Sigma = \{p, q\}$ iii. Set of all strings consisting of 0's and 1's with at most one pair of consecutive ones.	CO2	PO2	06
	b)	Obtain ϵ -NFA for the regular expression $(01 + 1)^*0$.	CO2	PO2	05
	c)	State and prove the Pumping Lemma theorem for Regular Languages. Also, prove that the Language $L = \{0^n 1^n \mid n \geq 1\}$ is not regular.	CO2	PO2	09
UNIT – III					
4	a)	Design Context Free Grammar for the following languages: i. $L = \{a^n b^m c^m d^n \mid n, m \geq 1\}$ ii. $L = \{w \mid n_a(w) = n_b(w)\}$	CO3	PO3	05
	b)	What is an ambiguous grammar? Is the following grammar ambiguous? Justify your answer for the string $w = aaabbabbba$. S \rightarrow aB bA A \rightarrow aS bAA a B \rightarrow bS aBB b	CO3	PO3	07
	c)	Define Chomsky Normal Form (CNF). Convert the following grammar to CNF. S \rightarrow ASA aB A \rightarrow B S B \rightarrow b ϵ C \rightarrow aC	CO3	PO3	08
OR					
5	a)	Eliminate useless symbols in the following grammar: S \rightarrow Aa bB A \rightarrow aA a B \rightarrow bB D \rightarrow ab Ea E \rightarrow aC d	CO2	PO2	06

	b)	Eliminate unit productions from the grammar $S \rightarrow A0 \mid B$ $A \rightarrow A \mid 11$ $B \rightarrow 0 \mid 12 \mid$	CO2	PO2	06
	c)	Define Parse tree, left most derivation, right most derivation. Explain with an example.	CO3	PO1	08
UNIT – IV					
6	a)	Design a Push Down Automata for the following language $L = \{wcw^R \mid w \in (a, b)^*\}$ by final state. Show whether the PDA is deterministic or not.	CO2	PO3	12
	b)	Obtain Pushdown Automata for the grammar: $S \rightarrow aABC$ $A \rightarrow aB \mid a$ $B \rightarrow bA \mid b$ $C \rightarrow a$	CO2	PO1	08
UNIT – V					
7	a)	Design a Turing machine to accept the language $L = \{a^m b^m c^m \mid m \geq 1\}$. Show the sequence of instantaneous descriptions that the Turing machine goes through when presented with the input aabbcc.	CO3	PO2	12
	b)	Obtain Turing Machine to perform unary addition.	CO3	PO2	08

B.M.S.C.E. - EVEN SEM 2023-24