

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

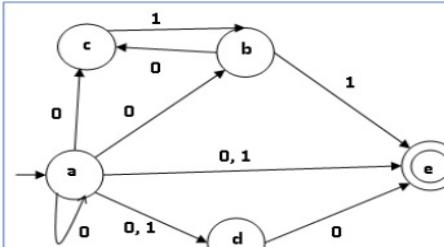
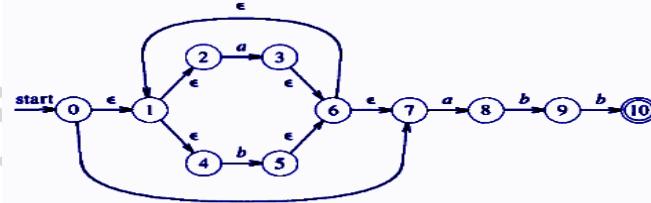
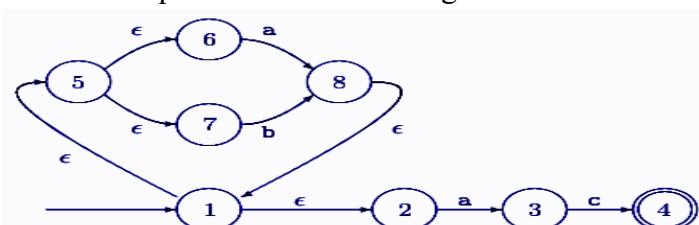
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Information Science and Engineering




Duration: 3 hrs.

Course Code: 23IS4ESTFC /22IS4PCTFC /19IS4PCTFC

Max Marks: 100

Course: Theoretical Foundations and Computations

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.

UNIT - I			<i>CO</i>	<i>PO</i>	Marks
1	a)	Construct DFAs for the following: i. To accept the strings starting and ending with different symbols for the $\Sigma = \{a,b\}$. ii. To accepts binary strings divisible by 3.	<i>CO1</i>		6
	b)	Obtain an equivalent DFA for the given NFA. 	<i>CO2</i>	<i>PO1</i>	9
	c)	Write ϵ -closures for all states in the ϵ -NFA given below: 	<i>CO1</i>		5
OR					
2	a)	Obtain an equivalent DFA for the given ϵ -NFA. 	<i>CO2</i>	<i>PO1</i>	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
 Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Minimize the given DFA using table-filling method.</p>	CO2	PO1	10
	c)	<p>Identify and describe the language accepted by the following DFA. Also write any two sample strings in the language.</p>	CO2	PO2	3
UNIT - II					
3	a)	<p>Obtain a regular expression for the following finite automata using the state elimination method.</p>	CO2	PO1	5
	b)	<p>Obtain ϵ- NFAs for the following regular expressions.</p> <ol style="list-style-type: none"> $(0+1)^*(00+10+11)$ $(a+b)^*ab + ba(a+b)^*$ 	CO3	PO1	10
	c)	<p>Prove the language $L=\{0^n 1^n\}$ is not regular using pumping lemma.</p>	CO2	PO1	5
OR					
4	a)	<p>Provide English description to identify the language for the following:</p> <ol style="list-style-type: none"> $(a+b)^*(aa+bb)$ $(\epsilon+a+b)(\epsilon+a+b)(\epsilon+a+b)$ $0(10+0)^*1$ $(a+b)^*b(a+b)(a+b)$ 	CO2	PO1	6
	b)	<p>State and prove the pumping lemma theorem for regular languages.</p>	CO1		8

	c)	<p>Determine regular expressions for the following languages.</p> <ol style="list-style-type: none"> $L = \{ 1w22 \mid \text{where } w \in \Sigma = \{1,2\} \}$. All strings starting not ending with “bb” except empty string for $\Sigma = \{a,b\}$. String contains at least two 0’s but not consecutive 0’s for $\Sigma = \{0,1\}$. 	CO2	PO2	6
		UNIT - III			
5	a)	<p>Write Grammars for the following languages</p> <ol style="list-style-type: none"> $L(G) = \{ a^m b^n \mid m \geq 0 \text{ and } n > 0 \}$ $L(G) = \{ ww^R \in \{0, 1\}^* \text{ and } w \text{ is even } \}$ 	CO3	PO2	6
	b)	<p>Simplify the following grammars:</p> <p>i.) Eliminate ϵ productions</p> $S \rightarrow XYX$ $X \rightarrow 0X \mid \epsilon$ $Y \rightarrow 1Y \mid \epsilon$ <p>ii.) Eliminate Unit Productions:</p> $S \rightarrow 0A \mid 1B \mid C$ $A \rightarrow 0S \mid 00$ $B \rightarrow 1 \mid A$ $C \rightarrow 01$ <p>iii.) Eliminate Useless symbols:</p> $S \rightarrow AB \mid AC$ $A \rightarrow aAb \mid bAa \mid a$ $B \rightarrow bbA \mid aaB \mid AB$ $C \rightarrow abCA \mid aDb$ $D \rightarrow bD \mid aC$	CO2	PO1	10
	c)	<p>Consider the following grammar.</p> $S \rightarrow aB \mid bA$ $A \rightarrow aS \mid bAA \mid a$ $B \rightarrow bS \mid aBB \mid b$ <p>For the string “aabbab”, write leftmost and rightmost derivations with respective parse trees.</p>	CO2	PO1	4
		OR			
6	a)	Briefly explain the different types of grammar.	CO1		5
	b)	<p>For the given grammar:</p> $S \rightarrow ABC \mid BaB$ $A \rightarrow aA \mid BaC \mid aaa$ $B \rightarrow bBb \mid a \mid D$ $C \rightarrow CA \mid AC$ $D \rightarrow \epsilon$ <ol style="list-style-type: none"> Eliminate ϵ-productions. Eliminate any unit productions in the resulting grammar. Eliminate any useless symbols in the resulting grammar. Convert the resulting grammar into Chomsky Normal Form. 	CO2	PO1	10

	c)	Determine if the following grammar is ambiguous or not. Write derivations and parse trees for the same. $S \rightarrow iCtS \mid iCtSeS \mid a$ $C \rightarrow b$	CO2	PO1	5
		UNIT - IV			
7	a)	Construct PDA for the language $L=\{a^n b^m c^n\}$ and write the instantaneous description for the string “aaabbccc”.	CO3	PO1	10
	b)	Convert CFG to PDA. $S \rightarrow aSB \mid bAC \mid bC$ $A \rightarrow bAC \mid bC$ $B \rightarrow b$ $C \rightarrow a$	CO2	PO1	5
	c)	How do you determine if a PDA is deterministic or not?	CO1		5
		OR			
8	a)	Design a PDA to accept the language $L = \{a^n b^{2n} \mid n \geq 1\}$ by final state. Write the sequence of moves using an instantaneous description for acceptance of any string of length 6 in the language.	CO3	PO1	10
	b)	Convert PDA to CFG. $\delta(q0, a, Z) \rightarrow (q0, AZ)$ $\delta(q0, a, A) \rightarrow (q0, AA)$ $\delta(q0, b, A) \rightarrow (q1, \epsilon)$ $\delta(q1, b, A) \rightarrow (q1, \epsilon)$	CO2	PO1	5
	c)	Determine if the given PDA is deterministic or not. $\delta(q0, a, z) = (q0, az)$ $\delta(q0, a, a) = (q0, aa)$ $\delta(q0, b, z) = (q0, bz)$ $\delta(q0, b, b) = (q0, bb)$ $\delta(q0, a, b) = (q0, ab)$ $\delta(q0, b, a) = (q0, ba)$ $\delta(q0, a, a) = (q1, \epsilon)$ $\delta(q0, b, b) = (q1, \epsilon)$ $\delta(q1, a, a) = (q1, \epsilon)$ $\delta(q1, b, b) = (q1, \epsilon)$ $\delta(q1, \epsilon, z) = (qf, z)$	CO2	PO1	5
		UNIT - V			
9	a)	Construct Turing Machine for the language $L = \{0^n 1^n 2^n\}$ for $n \geq 1$. Provide instantaneous description for acceptance of a string “001122”	CO3	PO1	12
	b)	Construct Turing Machine for simple adder “x+y” sample input 2+3 as “00c000”.	CO3	PO2	8
		OR			
10	a)	Construct Turing Machine for the language $L = \{ww^R\}$ for strings of a's and b's.	CO3	PO1	10
	b)	Illustrate the working of Universal Turing machine for the $L=\{a^n b^n \mid n \geq 1\}$ with transition diagram, transition table and instantaneous description for the string “aaabbb”.	CO3	PO2	10
