

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

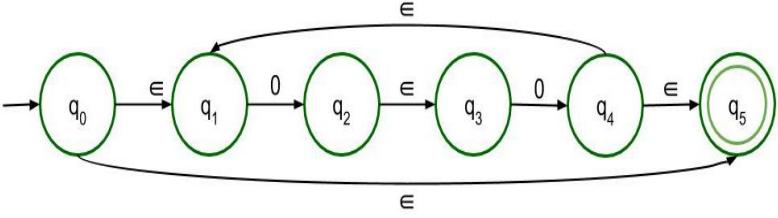
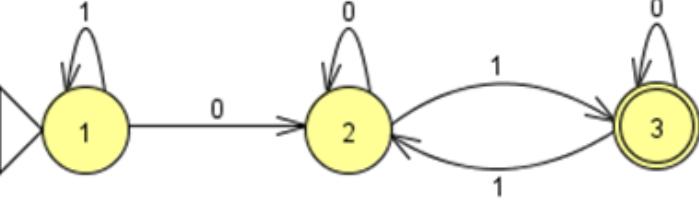
Programme: B.E.

Branch: Information Science and Engineering

Course Code: 23IS4ESTFC

Course: Theoretical Foundations of Computation

Semester: IV



Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																								
1	a)	<p>Identify the languages accepted by the following DFAs.</p> <p>i.</p> <p>ii.</p>	CO2	PO2	4																								
	b)	<p>Construct DFA for the following languages:</p> <p>i.) $L = \{1w0 \mid w \text{ is the set of strings with 0's and 1's}\}$</p> <p>ii.) $L = \{w \mid w \text{ is the set of binary strings divisible by 5}\}$</p> <p>Show the acceptance and rejection with sample strings.</p>	CO3	PO2	8																								
	c)	<p>Obtain equivalent DFA for the following ϵ-NFA.</p> <table border="1"> <tr> <th>δ</th> <th>ϵ</th> <th>a</th> <th>b</th> </tr> <tr> <td>→1</td> <td>2</td> <td>Φ</td> <td>Φ</td> </tr> <tr> <td>2</td> <td>Φ</td> <td>3,4</td> <td>Φ</td> </tr> <tr> <td>3</td> <td>2</td> <td>Φ</td> <td>4</td> </tr> <tr> <td>4</td> <td>3,5</td> <td>5</td> <td>Φ</td> </tr> <tr> <td>*5</td> <td>Φ</td> <td>Φ</td> <td>Φ</td> </tr> </table>	δ	ϵ	a	b	→1	2	Φ	Φ	2	Φ	3,4	Φ	3	2	Φ	4	4	3,5	5	Φ	*5	Φ	Φ	Φ	CO1	PO1	8
δ	ϵ	a	b																										
→1	2	Φ	Φ																										
2	Φ	3,4	Φ																										
3	2	Φ	4																										
4	3,5	5	Φ																										
*5	Φ	Φ	Φ																										
		OR																											

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	2	a)	Define ϵ -Closure. Determine the ϵ -Closures for all states in the ϵ -NFA.	CO1	PO1	6
		b)	Construct NFA for the language accepting all strings ending with "aab" for $\Sigma = \{a, b\}$ and convert it to equivalent DFA.	CO2	PO1	6
		c)	Minimize the following DFA:	CO1	PO1	8
UNIT - II						
3	a)	Provide English description to identify the language for the following: (i) $aa (a+b)^*(bb+a)$ (ii) $(\epsilon+a+b) (\epsilon+a+b) (\epsilon+a+b) (\epsilon+a+b)$ (iii) $(0+1)^*1(0+1)^4$	CO2	PO2	6	
	b)	Obtain regular expression for the following FA by eliminating states.	CO1	PO1	8	
	c)	Using Pumping Lemma, prove that the given language is not regular. $L = \{ 0^n 1^n \mid n \geq 1 \}$	CO1	PO1	6	
UNIT - III						
4	a)	Write Grammars for the following languages: i.) $L(G) = \{ a^m b^n \mid m \geq 0 \text{ and } n > 0 \}$ ii.) $L(G) = \{ w \mid w \in \{0, 1, 2\}^* \text{ and is a palindrome} \}$ iii.) $L(G) = \{ a^n b^{2n} \mid n \geq 1 \}$	CO3	PO2	6	

	b)	Determine whether the given grammars G1 and G2 is ambiguous or not G1= { S->aS aSbS ϵ } G2= {S-> SS (S) a }	CO1	PO1	10
	c)	Eliminating Useless Symbols in the grammar given below: $S \rightarrow aaB \mid abA \mid aaS$ $A \rightarrow aA$ $B \rightarrow ab \mid b$ $C \rightarrow ad$	CO1	PO1	4
		OR			
5	a)	Write the LMD and RMD and respective Parse trees for the string “ibtibtaeibta” from the CFG: $S \rightarrow iCtS \mid iCtSeS \mid a$ $C \rightarrow b$	CO1	PO1	7
	b)	For the given grammar: $S \rightarrow ABC \mid BaB$ $A \rightarrow aA \mid BaC \mid aaa$ $B \rightarrow bBb \mid a \mid D$ $C \rightarrow CA \mid AC$ $D \rightarrow \epsilon$ (i) Eliminate ϵ -productions. (ii) Eliminate any unit productions in the resulting grammar. (iii) Eliminate any useless symbols in the resulting grammar. (iv) Convert the resulting grammar into Chomsky Normal Form.	CO1	PO1	8
	c)	Summarize on the different types of grammar.	CO1	PO1	5
		UNIT - IV			
6	a)	Define Deterministic push down automate. Write the conditions to show whether a PDA is deterministic or not.	CO1	PO1	5
	b)	Design a PDA to accept the language $L=\{w \mid n_a(w) = n_b(w)\}$ by final state Write the instantaneous description for the string “abbabbaa”	CO2	PO1	10
	c)	Convert the following CFG to PDA. $S \rightarrow aABB \mid aAA$ $A \rightarrow aBB \mid a$ $B \rightarrow bBB \mid aA$ $C \rightarrow a$	CO1	PO1	5
		UNIT - V			
7	a)	Design Turing Machine to accept the language $L= \{0^n 1^n 2^n \mid n \geq 1\}$. Provide instantaneous description for acceptance of the string ,”001122”.	CO3	PO2	12
	b)	Design a Turing machine to accept a palindrome containing 0's and 1's of any length. Write the instantaneous description for the string “0110”	CO3	PO2	8
