

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2025 Semester End Make-Up Examinations

Programme: B.E.

Semester: V

Branch: Information Science and Engineering

Duration: 3 hrs.

Course Code: 23IS5PEADS

Max Marks: 100

Course: Advanced Data Structures and Algorithms

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	A B-Tree is used to store product IDs for a large retail database. Each product ID is a key, and the tree is of order 4. Initially, the B-Tree is empty. Insert the following keys in order: 10, 20, 5, 6, 15, 25, 30, 12, 18, 28. <ul style="list-style-type: none"> i. Show the structure of the B-Tree after all insertions. ii. Describe how the tree handles node splits when inserting 15 and 25. 	<i>CO2</i>	<i>PO2</i>	9
		b)	Compare the Interval Trees and Segment Trees.	<i>CO2</i>	<i>PO1</i>	5
		c)	Build a segment tree for the array [2, 4, 1, 3, 6, 5, 8, 7] <ul style="list-style-type: none"> • Demonstrate the construction process. • Use the tree to answer range sum queries for the ranges [1,4] and [3,7]. 	<i>CO1</i>	<i>PO2</i>	6
OR						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	A hospital uses an interval tree to manage room usage times. Each room's usage is represented by [start, end]. <ul style="list-style-type: none"> • Construct the interval tree for the intervals [8:00, 9:30], [10:00, 11:30], [9:15, 10:45], [12:00, 1:30]. • Query for any overlapping rooms for the time interval [9:00,10:00]. 	<i>CO2</i>	<i>PO2</i>	8
		b)	Design a skip list to store and efficiently query a list of userid's {501, 502, 504, 509, 510, 515} in an online gaming platform. Include operations to search, insert, and delete userid's. <p>Level 2 : 502, 510</p> <p>Level 1 : 501, 509</p> <p>Level 0 : 504, 515</p>	<i>CO1</i>	<i>PO2</i>	8
		c)	What are the Properties of B-Trees?	<i>CO2</i>	<i>PO1</i>	4

UNIT - II																
3	a)	Construct a trie for the following words: {"tree", "trie", "trip", "trap", "tap"}. Show the structure and explain how it supports efficient prefix search.	<i>CO2</i>	<i>PO2</i>	8											
	b)	Perform a union operation on the following two binomial heaps: <ul style="list-style-type: none"> Heap 1: [10,15,25] where $B_0 = 10$ Heap 2: [5,20,30] where $B_0 = 5$ Show the resulting structure and discuss the time complexity of the operation.	<i>CO1</i>	<i>PO9</i>	6											
	c)	Compare the usage of leftist heaps and binomial heaps. Discuss their advantages and limitations.	<i>CO1</i>	<i>PO1</i>	6											
OR																
4	a)	For the given tree, identify if it is a leftist heap. Justify the role of the null path length (NPL) in maintaining the heap property.	<i>CO3</i>	<i>PO2</i>	6											
	b)	Write the differences between the tries and suffix trees.	<i>CO3</i>	<i>PO1</i>	6											
	c)	For the string " abracadabra", construct a suffix tree and use it to count the occurrences of the substring "ab".	<i>CO3</i>	<i>PO4</i>	8											
UNIT - III																
5	a)	Create Huffman codes for a scenario where a streaming service compresses data packets with the following character probabilities:	<i>CO3</i>	<i>PO2</i>	8											
		<table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Character</th><th>Probability (%)</th></tr> </thead> <tbody> <tr> <td>A</td><td>30</td></tr> <tr> <td>B</td><td>25</td></tr> <tr> <td>C</td><td>20</td></tr> <tr> <td>D</td><td>15</td></tr> <tr> <td>E</td><td>10</td></tr> </tbody> </table>	Character	Probability (%)	A	30	B	25	C	20	D	15	E	10		
Character	Probability (%)															
A	30															
B	25															
C	20															
D	15															
E	10															
b)	Discuss the time complexity of constructing a Huffman tree using the greedy approach.	<i>CO3</i>	<i>PO1</i>	4												
	c)	A company processes data using matrix multiplications. The matrices have the following dimensions: A1:10×20, A2:20×30,	<i>CO3</i>	<i>PO2</i>	8											

		A3:30×40, A4:40×50. Determine the optimal parenthesizing to minimize the total number of scalar multiplications.			
		OR			
6	a)	For the following set of activities: Start 1 3 0 5 8 5 Finish 2 4 6 7 9 9 Show step-by-step how the greedy algorithm selects activities. Compare the result with a brute-force approach.	CO3	PO9	8
	b)	Consider the following keys, probabilities, and depths: <ul style="list-style-type: none">Keys: {Java, Ruby, PHP, Python}Probabilities: {0.5, 0.3, 0.1, 0.1}Depths: {2, 1, 2, 3}. Calculate the total search cost of the Optimal Binary Search Tree and verify if the given structure is optimal.	CO3	PO1	7
	c)	Write an exponential-time recursive algorithm to compute the length of an LCS of two sequences.	CO3	PO1	5
		UNIT - IV			
7	a)	Working modulo $q = 13$, how many spurious hits does the Rabin-Karp matcher encounter in the text $T = 2359023141526739921$ when looking for the pattern $P = 31415$?	CO4	PO5	4
	b)	Construct a transition diagram for the string-matching automaton that accepts all strings ending in the string "ababaca" and processing the string "aababaababaca" to find the matching or not.	CO4	PO2	8
	c)	Explain the concept of the "prefix function" (or failure function) in the KMP algorithm. How does it help improve efficiency? Illustrate the same.	CO4	PO1	8
		OR			
8	a)	Construct the string-matching automaton for the pattern $P = aabab$ and illustrate its operation on the text string $T = aaababaabaababaab$.	CO4	PO2	8
	b)	Write the procedure of Rabin-Karp-Matcher. What is the Worst time complexity of matching.	CO4	PO5	7
	c)	Show how to compute the prefix function for the pattern "AABAACAAABAA".	CO4	PO2	5
		UNIT - V			
9	a)	Given the following graph with vertices A, B, C, D, E and edges: <ul style="list-style-type: none">$A \rightarrow B$ (4), $A \rightarrow C$ (-2), $B \rightarrow C$ (3), $C \rightarrow D$ (2), $D \rightarrow E$ (3), $E \rightarrow B$ (-5). Use the Bellman-Ford algorithm to find the shortest path from A to all other vertices.	CO5	PO10	8
	b)	Write the basic procedure of Ford-Fulkerson algorithm.	CO5	PO1	4
	c)	i. Write the procedure of Extended-Euclid algorithm.	CO5	PO4	8

		ii. Compute the values (d, x, y) that the call EXTENDED-EUCLID (899, 493) returns.			
		OR			
10	a)	<p>Design a flow network with 4 nodes.</p> <p>Nodes : S, A, B, T (Source S and sink T)</p> <p>Edges and capacities : S-> A with capacity 10, S-> B with capacity 5, A-> T with capacity 10, B-> T with capacity 5.</p> <p>Define and demonstrate augmenting path, bottleneck capacity, and total flow at each iteration using the Ford-Fulkerson method.</p>	<i>cos</i>	<i>po3</i>	10
	b)	<p>A bus arrives at stops every 5, 7 and 9 minutes. If the buses arrive together at 10:00 AM, when will they next arrive together? Solve using Chinese Remainder Theorem.</p>	<i>cos</i>	<i>po6</i>	10
