

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Information Science and Engineering

Duration: 3 hrs.

Course Code: 23IS5PEAIS

Max Marks: 100

Course: Artificial Intelligence

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
1	a)	What is AI? Illustrate in detail the four approaches or views of AI.				<i>CO1</i>	<i>PO1</i>	10
	b)	Demonstrate with an example, the working of Depth first search.				<i>CO1</i>	<i>PO1</i>	10
OR								
2	a)	Describe the structure of intelligent agents and environment in artificial intelligence with an example.				<i>CO1</i>	<i>PO1</i>	10
	b)	Explain Iterative Deepening search with an example.				<i>CO1</i>	<i>PO1</i>	10
UNIT - II								
3	a)	Write the AO algorithm for problem reduction. Illustrate with an example.				<i>CO2</i>	<i>PO1</i>	10
	b)	Explain the algorithm for Generate-and-Test. Illustrate with an example.				<i>CO2</i>	<i>PO1</i>	10
OR								
4	a)	Explicitly illustrate the simple hill climbing algorithm with an algorithm and example.				<i>CO2</i>	<i>PO1</i>	10
	b)	Write A* search algorithm. Illustrate with an example.				<i>CO2</i>	<i>PO1</i>	10
UNIT - III								
5	a)	Design a system that combines both forward and backward reasoning to enhance the accuracy and efficiency of diagnosing various medical conditions.				<i>CO3</i>	<i>PO2</i>	10
	b)	Articulate in detail the 7 steps of the knowledge-engineering process in First Order Logic				<i>CO3</i>	<i>PO2</i>	10
OR								

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	6	a)	Differentiate along with an example, Procedural versus Declarative representation of knowledge.	CO3	PO2	10
		b)	Write the algorithm for backward chaining. Illustrate with an example.			10
UNIT - IV						
	7	a)	Explain the Learning Architecture with a neat diagram.	CO4	PO3	10
		b)	Illustrate candidate elimination algorithms with an example.			10
OR						
	8	a)	Differentiate between case-based reasoning and explanation-based learning.	CO4	PO3	10
		b)	Explain the Learning in Decision Trees. Elaborate on how to avoid overfitting in decision trees.			10
UNIT - V						
	9	a)	Describe Bayes' rule. Illustrate the working of Bayes' rule in combining evidences.	CO5	PO3	10
		b)	"Where do probability come from?" Validate the statement summarizing the different probabilistic views.			10
OR						
	10	a)	Describe knowledge representation in an uncertain domain. Illustrate with an example.	CO5	PO3	10
		b)	Discuss the axioms of probability in detail.			10
