

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## June 2025 Semester End Main Examinations

**Programme: B.E.**

**Semester: V**

**Branch: Information Science and Engineering**

**Duration: 3 hrs.**

**Course Code: 23IS5PEAIS / 22IS5PEAIS**

**Max Marks: 100**

**Course: Artificial Intelligence**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
 2. Missing data, if any, may be suitably assumed.

| UNIT - I  |    |                                                                                                                                                                                                                                                                  | <i>CO</i>  | <i>PO</i>  | Marks     |
|-----------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-----------|
| 1         | a) | Define AI. Explain the working of different types of agents.                                                                                                                                                                                                     | <i>CO1</i> | <i>PO1</i> | <b>10</b> |
|           | b) | Describe the structure of intelligent agents and environment in artificial intelligence with an example.                                                                                                                                                         | <i>CO1</i> | <i>PO2</i> | <b>10</b> |
| <b>OR</b> |    |                                                                                                                                                                                                                                                                  |            |            |           |
| 2         | a) | Interpret Depth-First Search algorithm with example and mention their advantages.                                                                                                                                                                                | <i>CO1</i> | <i>PO2</i> | <b>6</b>  |
|           | b) | Explain the water jug problems with state space search and find the solution to get exactly 2 litre in 4-gallon jug, when you have given x: 4-gallon jug and y: 3-gallon jug.<br><br>State representation: $(x, y)$<br>Start state: $(0, 0)$ Goal state $(2, n)$ | <i>CO1</i> | <i>PO3</i> | <b>8</b>  |
|           | c) | Write Breadth First Search Algorithm with example.                                                                                                                                                                                                               | <i>CO1</i> | <i>PO2</i> | <b>6</b>  |
| UNIT - II |    |                                                                                                                                                                                                                                                                  |            |            |           |
| 3         | a) | Write and explain A* algorithm and apply same to solve the given problem in which Source is A goal is G. The heuristic value is provided next to the nodes.                                                                                                      | <i>CO2</i> | <i>PO3</i> | <b>8</b>  |
|           |    |                                                                                                                                                                                                                                                                  |            |            |           |

**10 Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

|   |    |                                                                                                                                                                                                                                                                                                                                                                |     |     |           |
|---|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|   | b) | Write and explain the algorithm for Best-first search with an example.                                                                                                                                                                                                                                                                                         | CO2 | PO2 | <b>6</b>  |
|   | c) | Illustrate with an example Means-Ends Analysis Algorithm and State at least one of its application to real-world problems.                                                                                                                                                                                                                                     | CO2 | PO2 | <b>6</b>  |
|   |    | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                      |     |     |           |
| 4 | a) | Apply Cryptarithmetic method and encrypt the following expressions<br><br>S E N D and M O R E to obtain the encrypted expression M O N E Y using the following constraints<br><br>= {1: values have to be from 0 to 9<br><br>2 : every letter should have a unique value }<br><br>Clearly mentioning the set of variables, Values and the complete assignment. | CO2 | PO3 | <b>10</b> |
|   | b) | Explicitly illustrate the simple hill climbing algorithm, explain the difference between Difference between simple & steepest-ascent hill climbing and problems with hill climbing.                                                                                                                                                                            | CO2 | PO3 | <b>10</b> |
|   |    | <b>UNIT - III</b>                                                                                                                                                                                                                                                                                                                                              |     |     |           |
| 5 | a) | Write and describe the syntax and semantics of first order logic.                                                                                                                                                                                                                                                                                              | CO3 | PO2 | <b>10</b> |
|   | b) | Differentiate along with an example, Procedural versus Declarative representation of knowledge                                                                                                                                                                                                                                                                 | CO3 | PO2 | <b>10</b> |
|   |    | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                      |     |     |           |
| 6 | a) | Write the algorithm for forward chaining. Illustrate with an example.                                                                                                                                                                                                                                                                                          | CO3 | PO2 | <b>10</b> |
|   | b) | Discuss the syntax & semantics of propositional logic.                                                                                                                                                                                                                                                                                                         | CO3 | PO2 | <b>10</b> |
|   |    | <b>UNIT - IV</b>                                                                                                                                                                                                                                                                                                                                               |     |     |           |
| 7 | a) | Explain case based reasoning with example.                                                                                                                                                                                                                                                                                                                     | CO4 | PO2 | <b>6</b>  |
|   | b) | Discuss explanation based learning with an example.                                                                                                                                                                                                                                                                                                            | CO4 | PO2 | <b>7</b>  |
|   | c) | Define hypothesis, hypothesis space and version space.                                                                                                                                                                                                                                                                                                         | CO4 | PO2 | <b>7</b>  |
|   |    | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                      |     |     |           |
| 8 | a) | Explain the steps to choose best representation of learning.                                                                                                                                                                                                                                                                                                   | CO4 | PO2 | <b>6</b>  |
|   | b) | Distinguish between case based learning and explanation based learning                                                                                                                                                                                                                                                                                         | CO4 | PO2 | <b>7</b>  |
|   | c) | Illustrate learning under uncertainty with an example.                                                                                                                                                                                                                                                                                                         | CO4 | PO2 | <b>7</b>  |

| <b>UNIT - V</b> |    |    |                                                                                                             |            |            |           |
|-----------------|----|----|-------------------------------------------------------------------------------------------------------------|------------|------------|-----------|
|                 | 9  | a) | Describe Bayes' rule. Illustrate the working of Bayes' rule in combining evidences.                         | <i>CO5</i> | <i>PO2</i> | <b>10</b> |
|                 |    | b) | Discuss the axioms of probability in detail.                                                                | <i>CO5</i> | <i>PO2</i> | <b>10</b> |
| <b>OR</b>       |    |    |                                                                                                             |            |            |           |
|                 | 10 | a) | Describe the basic probability notation. Illustrate the working of Bayesian Belief Network with an example. | <i>CO5</i> | <i>PO2</i> | <b>10</b> |
|                 |    | b) | Describe knowledge representation in an uncertain domain. Illustrate with an example                        | <i>CO5</i> | <i>PO2</i> | <b>10</b> |

\*\*\*\*\*

REAPPEAR EXAMS 2024-25