

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Information Science and Engineering

Duration: 3 hrs.

Course Code: 23IS5PCCNS

Max Marks: 100

Course: Cryptography and Network Security

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	With a neat block diagram, describe the model for network security. Explain the different types of attacks on encrypted messages.	<i>CO1</i>		8
	b)	Encrypt the plaintext "I LOVE INDIA" using Playfair cipher with the key "BANGALORE".	<i>CO1</i>		6
	c)	Using the Monoalphabetic Cipher technique, encrypt the plaintext "SECURITY" with a substitution pattern of your choice. Discuss the challenges associated in breaking such a cipher.	<i>CO1</i>		6
OR					
2	a)	Define passive and active security attacks. Describe the functioning of the following attacks with a suitable diagrams i) Masquerade ii) Replay iii) Modification of messages iv) Denial of service	<i>CO1</i>		8
	b)	Derive the cipher text using Ceaser cipher for the following plain text message "Enabling Transformation".	<i>CO1</i>		6
	c)	Use a columnar transposition cipher with the keyword "NETWORK" to encrypt the plaintext "COMMUNICATION SYSTEMS". Describe the steps involved in the encryption and decryption process.	<i>CO1</i>		6
UNIT - II					
3	a)	Explain the working principle of the Feistel Cipher. Discuss why is it possible to use the same algorithm for both encryption and decryption.	<i>CO2</i>	<i>PO1</i>	6
	b)	Describe the difference between ECB (Electronic Codebook) and CBC (Cipher Block Chaining) modes in block ciphers. Provide the potential vulnerabilities of ECB mode.	<i>CO3</i>	<i>PO2</i>	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Provide the role of the keystream in stream ciphers. Discuss why randomness of the keystream critical for the security of the cipher.	CO1		7
		OR			
4	a)	Identify the roles of confusion and diffusion in block cipher design. Provide examples of operations used to achieve these properties.	CO2	PO1	6
	b)	Define the Avalanche Effect in block cipher design. How does it ensure that small changes in plaintext or key result in significant changes in ciphertext.	CO1		7
	c)	Describe how the RC4 stream cipher combines the keystream with the plaintext to produce ciphertext. Discuss the roles of XOR in this process.	CO2	PO1	7
		UNIT - III			
5	a)	Compare public-key and private-key cryptosystems. Describe the use of a public-private key pair in enhancing security.	CO2	PO1	6
	b)	Given an RSA system where $n=33$ and $e=3$, decrypt a ciphertext $C=27$. Calculate the private key d and demonstrate the decryption process.	CO4	PO3	8
	c)	Illustrate the concept of message digest in the context of SHA-512. Explain how a message of arbitrary length is compressed into a fixed-length hash.	CO2	PO1	6
		OR			
6	a)	Describe how a public-key cryptosystem enables digital signatures. Provide the process of signing and verification using the public and private keys.	CO2	PO1	6
	b)	Demonstrate the Diffie-Hellman Key Exchange protocol using p (a prime number) and $g = 5$ (a primitive root). Assume Alice selects $a = 6$ and Bob selects $b = 15$. Calculate the shared secret key.	CO4	PO2	8
	c)	Explain the key properties of cryptographic hash functions, such as pre-image resistance, second pre-image resistance, and collision resistance. Discuss why these properties are important for security.	CO1		6
		UNIT - IV			
7	a)	Describe the role of Public Key Infrastructure (PKI) in the distribution and management of public keys. How does PKI ensure the integrity and authenticity of public keys.	CO2	PO1	6
	b)	Describe the concept of a Key Distribution Center (KDC) in symmetric encryption and discuss how it ensures secure key distribution between two communicating parties.	CO3	PO2	7

		c)	Describe the Handshake Protocol in TLS. Identify the key steps involved and how does it establish a secure session between the client and server.	CO4	PO1	7
			OR			
	8	a)	Discuss the role of Certificate Authorities (CAs) in public-key distribution. How does a CA ensure the trustworthiness of a public key?	CO4	PO1	6
		b)	Describe the Heartbeat Protocol in TLS. Discuss its purpose and how it maintains session liveliness during a TLS connection.	CO4	PO1	7
		c)	Explain the concept of a Man-in-the-Middle (MITM) attack on SSL/TLS connections. How can such attacks compromise the security of encrypted communication?	CO4	PO2	7
			UNIT - V			
	9	a)	Provide the role of a private key in generating a digital signature. How does the corresponding public key verify the authenticity of the signature?	CO5	PO1	6
		b)	Discuss how NIST Digital Signature Algorithm combines cryptographic hash functions and modular arithmetic to create secure signatures.	CO3	PO2	7
		c)	Explain the format of the Encapsulating Security Payload (ESP) in IPsec. Provide the fields included and their contribution towards encryption and authentication.	CO5	PO2	7
			OR			
	10	a)	Describe the core security services provided by IPsec: confidentiality, authentication, integrity, and replay protection. How do these services ensure secure communication?	CO5	PO2	6
		b)	Explain the working of the SGNORR Digital Signature Scheme. How does it achieve security and efficiency in signing and verification?	CO3	PO2	7
		c)	Discuss the difference between transport mode and tunnel mode in ESP. How does each mode impact the encapsulation and protection of IP packets?	CO5	PO2	7
