

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June / July 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Information Science and Engineering

Duration: 3 hrs.

Course Code: 23IS5PCMLG

Max Marks: 100

Course: Machine Learning

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks																																		
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	<p>A binary classification model is used to predict whether a patient has a disease (Positive) or not (Negative). The predictions and actual labels for 10 patients are given below:</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center;">Patient</th><th style="text-align: center;">Actual Label</th><th style="text-align: center;">Predicted Label</th></tr> </thead> <tbody> <tr><td style="text-align: center;">1</td><td style="text-align: center;">Positive</td><td style="text-align: center;">Positive</td></tr> <tr><td style="text-align: center;">2</td><td style="text-align: center;">Negative</td><td style="text-align: center;">Negative</td></tr> <tr><td style="text-align: center;">3</td><td style="text-align: center;">Positive</td><td style="text-align: center;">Negative</td></tr> <tr><td style="text-align: center;">4</td><td style="text-align: center;">Positive</td><td style="text-align: center;">Positive</td></tr> <tr><td style="text-align: center;">5</td><td style="text-align: center;">Negative</td><td style="text-align: center;">Negative</td></tr> <tr><td style="text-align: center;">6</td><td style="text-align: center;">Negative</td><td style="text-align: center;">Positive</td></tr> <tr><td style="text-align: center;">7</td><td style="text-align: center;">Positive</td><td style="text-align: center;">Negative</td></tr> <tr><td style="text-align: center;">8</td><td style="text-align: center;">Positive</td><td style="text-align: center;">Positive</td></tr> <tr><td style="text-align: center;">9</td><td style="text-align: center;">Negative</td><td style="text-align: center;">Negative</td></tr> <tr><td style="text-align: center;">10</td><td style="text-align: center;">Negative</td><td style="text-align: center;">Positive</td></tr> </tbody> </table> <p>I. Construct the confusion matrix for this classification task. II. Calculate the Accuracy, precision, recall and F1 score.</p>	Patient	Actual Label	Predicted Label	1	Positive	Positive	2	Negative	Negative	3	Positive	Negative	4	Positive	Positive	5	Negative	Negative	6	Negative	Positive	7	Positive	Negative	8	Positive	Positive	9	Negative	Negative	10	Negative	Positive	<i>CO2</i>	<i>PO2</i>	10
Patient	Actual Label	Predicted Label																																					
1	Positive	Positive																																					
2	Negative	Negative																																					
3	Positive	Negative																																					
4	Positive	Positive																																					
5	Negative	Negative																																					
6	Negative	Positive																																					
7	Positive	Negative																																					
8	Positive	Positive																																					
9	Negative	Negative																																					
10	Negative	Positive																																					
		b)	<p>Consider you are building a regression model to predict house prices using features such as size, location, number of rooms, and age of the house. During evaluation, the model performs very well on the training data but poorly on the test data.</p> <p>I. Identify the problem affecting the model's performance. II. Explain any two solutions to address this issue.</p>	<i>CO3</i>	<i>PO2</i>	10																																	
OR																																							
2	a)	Imagine You are working on a machine learning project to predict customer churn for a telecom company. You have gathered data on customer demographics, usage patterns, and service feedback. However, after training and testing multiple machine learning	<i>CO3</i>	<i>PO2</i>	10																																		

		models, you notice the model's performance is not satisfactory due to “bad data” and “bad algorithm” . explain the challenges posed by “bad data” and “bad algorithm” in a machine learning project.																																																																					
	b)	Consider the below dataset which contains information about customers and their subscription plans to a telecom service: Design the steps involved in transforming this raw data into a clean, understandable, and readable format using data preprocessing techniques and choose an appropriate machine learning algorithm based on the preprocessed features to predict Total Spend.	CO2	PO2	10																																																																		
		<table border="1"> <thead> <tr> <th>Cust-ID</th><th>Age</th><th>Income</th><th>Gender</th><th>Subscription Plan</th><th>Total Spend (\$)</th></tr> </thead> <tbody> <tr><td>1</td><td>25</td><td>50000</td><td>Male</td><td>Basic</td><td>150</td></tr> <tr><td>2</td><td>30</td><td>60000</td><td>Female</td><td>Premium</td><td>250</td></tr> <tr><td>3</td><td>NaN</td><td>55000</td><td>Male</td><td>Basic</td><td>180</td></tr> <tr><td>4</td><td>28</td><td>48000</td><td>Female</td><td>Standard</td><td>200</td></tr> <tr><td>5</td><td>35</td><td>70000</td><td>Male</td><td>Premium</td><td>300</td></tr> <tr><td>6</td><td>40</td><td>45000</td><td>Female</td><td>Standard</td><td>100</td></tr> <tr><td>7</td><td>27</td><td>NaN</td><td>Male</td><td>Premium</td><td>220</td></tr> <tr><td>8</td><td>50</td><td>80000</td><td>Female</td><td>Basic</td><td>190</td></tr> <tr><td>9</td><td>60</td><td>95000</td><td>Male</td><td>Premium</td><td>350</td></tr> <tr><td>10</td><td>23</td><td>45000</td><td>Female</td><td>Standard</td><td>120</td></tr> </tbody> </table>				Cust-ID	Age	Income	Gender	Subscription Plan	Total Spend (\$)	1	25	50000	Male	Basic	150	2	30	60000	Female	Premium	250	3	NaN	55000	Male	Basic	180	4	28	48000	Female	Standard	200	5	35	70000	Male	Premium	300	6	40	45000	Female	Standard	100	7	27	NaN	Male	Premium	220	8	50	80000	Female	Basic	190	9	60	95000	Male	Premium	350	10	23	45000	Female	Standard	120
Cust-ID	Age	Income	Gender	Subscription Plan	Total Spend (\$)																																																																		
1	25	50000	Male	Basic	150																																																																		
2	30	60000	Female	Premium	250																																																																		
3	NaN	55000	Male	Basic	180																																																																		
4	28	48000	Female	Standard	200																																																																		
5	35	70000	Male	Premium	300																																																																		
6	40	45000	Female	Standard	100																																																																		
7	27	NaN	Male	Premium	220																																																																		
8	50	80000	Female	Basic	190																																																																		
9	60	95000	Male	Premium	350																																																																		
10	23	45000	Female	Standard	120																																																																		
		UNIT - II																																																																					
3	a)	Imagine you are a data scientist working for a healthcare company. You have a dataset containing patient information and you need to classify whether patients are at risk of developing diabetes. Illustrate the steps used in RIPPER algorithm to build a predictive model & identify the ruleset for the given below dataset.	CO3	PO2	10																																																																		
	b)	Consider given a dataset about students and their likelihood of passing a final exam. Construct a decision tree using the CART algorithm to classify whether a student is likely to pass. Perform one iteration of the algorithm, showing the calculations for the Gini Index, selecting the best splitting attribute, and providing the resulting decision tree.	CO2	PO2	10																																																																		

StudentID	Attendance Rate	Previous Grades	Extracurricular Activities	Pass Exam			
S101	High	Good	Yes	Yes			
S102	Low	Poor	No	No			
S103	Moderate	Average	Yes	Yes			
S104	Low	Poor	No	No			
S105	Moderate	Average	Yes	Yes			
S106	Low	Poor	No	No			

OR

4 a) Develop a Decision tree model on Wine dataset consists of 178 samples of wine, with 13 features and 3 classes. Demonstrate both pre-pruning and post-pruning techniques for a Decision Tree classifier and print confusion matrix and classification report.

Alcohol	Malic_Acid	Ash	Ash_Alc_anity	Magnesi um	Total_Ph enols	Flavanoi ds	Nonflav anoid_P henols	Proanth ocyanins	Color_In tensity	Hue	OD280	Proline	Custom er_Segm ent
14.23	1.71	2.43	15.6	127	2.8	3.06	0.28	2.29	5.64	1.04	3.92	1065	1
13.2	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.4	1050	1
13.16	2.36	2.67	18.6	101	2.8	3.24	0.3	2.81	5.68	1.03	3.17	1185	1

b) Given the dataset below, generate the decision tree for 1 iteration

Outlook	Temperature	Humidity	Wind	Played football(yes/no)
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

UNIT - III

5 a) Discuss the key features of Bayesian learning methods. Explain how Bayesian learning differs from traditional machine learning methods, and outline the advantages and challenges associated with using a Bayesian approach.

b) Consider the following hypothetical data concerning student characteristics and whether or not each student should be hired.

Student ID	Attendance	GPA	Effort	Hired (Class)
1	Excellent	Good	High	Yes

CO4

PO3

10

CO2

PO2

10

CO2

PO2

10

CO2

PO2

10

			<table border="1"> <tr><td>2</td><td>Poor</td><td>Poor</td><td>Low</td><td>No</td></tr> <tr><td>3</td><td>Excellent</td><td>Poor</td><td>High</td><td>Yes</td></tr> <tr><td></td><td></td><td></td><td>Medium</td><td></td></tr> <tr><td>4</td><td>Good</td><td>Good</td><td></td><td>Yes</td></tr> <tr><td>5</td><td>Poor</td><td>Poor</td><td>High</td><td>No</td></tr> <tr><td>6</td><td>Excellent</td><td>Good</td><td>High</td><td>Yes</td></tr> <tr><td>7</td><td>Good</td><td>Poor</td><td>Low</td><td>No</td></tr> </table>	2	Poor	Poor	Low	No	3	Excellent	Poor	High	Yes				Medium		4	Good	Good		Yes	5	Poor	Poor	High	No	6	Excellent	Good	High	Yes	7	Good	Poor	Low	No			
2	Poor	Poor	Low	No																																					
3	Excellent	Poor	High	Yes																																					
			Medium																																						
4	Good	Good		Yes																																					
5	Poor	Poor	High	No																																					
6	Excellent	Good	High	Yes																																					
7	Good	Poor	Low	No																																					
			Use a Naive Bayes classifier to determine whether or not someone with excellent attendance, poor GPA, and High effort should be hired.																																						
			OR																																						
6	a)		Define Bayes' Theorem and explain its components. In a factory, two machines produce parts. Machine 1 produces 70% of the parts, and Machine 2 produces 30% of the parts. The probability that a part produced by Machine 1 is defective is 0.02, and the probability that a part produced by Machine 2 is defective is 0.05. A part is selected at random, and it is found to be defective. Using Bayes' Theorem , calculate the probability that the defective part was produced by Machine 1.	<i>CO2</i>	<i>PO2</i>	10																																			
	b)		Discuss how Maximum Likelihood and Least Square Error Hypothesis techniques fit into the Bayesian paradigm for parameter estimation with suitable derivations.	<i>CO1</i>		10																																			
			UNIT - IV																																						
7	a)		i) Explain the concept of the curse of dimensionality and how it affects machine learning algorithms. ii) Assume you are working with the IRIS dataset and wish to reduce its dimensionality to 2 using Principal Component Analysis (PCA). Write a Python script to: <ol style="list-style-type: none"> I. Load the IRIS dataset. II. Apply PCA to reduce its dimensions to 2. III. Use an ensemble learning algorithm IV. Evaluate the model's performance on the transformed data by outputting its accuracy and a classification report. 	<i>CO4</i>	<i>PO3</i>	4+6																																			
	b)		In ensemble learning, various techniques are used to improve model performance by combining multiple models. In this context, the following concepts are important: <ol style="list-style-type: none"> I. Differentiate between Hard Voting and Soft Voting. For each, provide a code example that demonstrates how they work in a classification problem. II. Differentiate between Bagging and Boosting. Explain the key differences between these two techniques and illustrate each with an example using a classification dataset. 	<i>CO1</i>		10																																			
			OR																																						

	8	a)	<p>Apply the K-Means algorithm on the given dataset, use centroid as (1.0,1.0) & (5.0,7.0) for two clusters.</p> <table border="1"> <thead> <tr> <th>Individual</th><th>Variable 1</th><th>Variable 2</th></tr> </thead> <tbody> <tr><td>1</td><td>1.0</td><td>1.0</td></tr> <tr><td>2</td><td>1.5</td><td>2.0</td></tr> <tr><td>3</td><td>3.0</td><td>4.0</td></tr> <tr><td>4</td><td>5.0</td><td>7.0</td></tr> <tr><td>5</td><td>3.5</td><td>5.0</td></tr> <tr><td>6</td><td>4.5</td><td>5.0</td></tr> <tr><td>7</td><td>3.5</td><td>4.5</td></tr> </tbody> </table>	Individual	Variable 1	Variable 2	1	1.0	1.0	2	1.5	2.0	3	3.0	4.0	4	5.0	7.0	5	3.5	5.0	6	4.5	5.0	7	3.5	4.5	CO2	PO2	10
Individual	Variable 1	Variable 2																												
1	1.0	1.0																												
2	1.5	2.0																												
3	3.0	4.0																												
4	5.0	7.0																												
5	3.5	5.0																												
6	4.5	5.0																												
7	3.5	4.5																												
		b)	<p>An ensemble technique in machine learning combines the predictions of multiple models to create a stronger model. One such technique focuses on combining several weak classifiers to produce a strong classifier. Identify and explain the ensemble technique that combines multiple weak classifiers to create a strong classifier.</p>	CO2	PO2	10																								
			UNIT - V																											
	9	a)	<p>Explain the concept of a Perceptron with a neat diagram. Discuss the Perceptron training rule and the conditions under which the Perceptron rule fails. Why does it become necessary to apply the Delta rule in such cases?</p>	COI		10																								
		b)	<p>Explain the Backpropagation Algorithm. How does it learn the weights for a multilayer network?</p>	COI		10																								
			OR																											
	10	a)	<p>i) Derive the Gradient Descent rule and explain the conditions under which it is applied.</p> <p>ii) Differentiate between Gradient Descent and Stochastic Gradient Descent.</p>	COI		10																								
		b)	<p>Consider a simple neural network with the following configuration:</p> <ul style="list-style-type: none"> Input Layer: 2 neurons (inputs X_1 and X_2) Hidden Layer: 2 neurons with sigmoid activation. Output Layer: 1 neuron $Y=0.5$ Learning Rate (η) = 0.1 <p>Perform 1 forward pass and 1 backward pass</p>	CO2	PO2	10																								
