

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Information Science and Engineering

Duration: 3 hrs.

Course Code:22IS5PESTG

Max Marks: 100

Course: Software testing

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Identify any four test scenarios for Netflix application and write atleast three test cases for each scenario.	<i>CO2</i>	<i>PO1</i>	10
	b)	Elaborate on the strengths and weaknesses of automated and manual testing.	<i>CO2, 6</i>	<i>PO2, 5, 9</i>	10
OR					
2	a)	Define Software Quality. Illustrate the five views of Software Quality.	<i>CO2</i>	<i>PO1</i>	6
	b)	Differentiate the following: ● Verification and Validation ● White box and Black box testing.	<i>CO2</i>	<i>PO1</i>	4
	c)	What is Regression testing and Justify Why Regression testing is considered as sub-phase of testing? Explain the different testing levels with suitable V model.	<i>CO2</i>	<i>PO1</i>	10
UNIT - II					
3	a)	Explain the different levels of testing with a relevant diagram.	<i>CO2</i>	<i>PO1</i>	10
	b)	Explain the different steps in the code review process with a relevant diagram.	<i>CO2</i>	<i>PO1</i>	10
OR					
4	a)	Illustrate the working of Test-first process in Extreme Programming (XP) with suitable diagram.	<i>CO2</i>	<i>PO1</i>	5
	b)	Compare and Contrast Specification based test case identification method with the code-based test case identification method.	<i>CO2</i>	<i>PO1</i>	5

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	<p>Analyze and create 3 mutants (along with code) for the below program. Design 3 test cases to identify whether the mutants are equivalent, killable & stubborn. Update the test cases so that all mutants are killed and find the mutation score accordingly.</p> <pre> #include<stdio.h> int main() { char c; printf("Enter any character : "); scanf("%c",&c); if(c>='A' && c<='Z') printf("character is an upper case"); else if(c>='a' && c<='z') printf("character is a lower case"); else if(c>='0'&& c<='9') printf("it is not a character"); else printf("character is a special character"); return 0; } </pre>	CO2	PO1	10
UNIT - III					
5	a)	For a triangle problem, calculate the number of test cases needed and construct the normal and worst-case boundary value test cases.	CO4	PO3	10
	b)	Compare and contrast the single / multiple fault assumption with boundary value and equivalence class testing.	CO3	PO2	10
OR					
6	a)	What is Equivalence Class Testing? Describe Weak Normal Equivalence Class Testing and Weak Robust Equivalence Class Testing, providing relevant examples for each.	CO1		10
	b)	<p>Consider a scenario where you are testing an online registration form for a website. The form includes the following fields:</p> <ul style="list-style-type: none"> • Username: Must be between 5 to 15 characters, containing only alphanumeric characters. • Password: Must be between 8 to 20 characters, with at least one uppercase letter, one lowercase letter, and one special character (e.g., @, #, \$, etc.). • Email: Must be in a valid email format (e.g., user@example.com). • Age: Must be between 18 and 100. <p>Using Strong Robust Equivalence Class Testing, design test cases for the above fields, ensuring robust boundary testing for each field.</p>	CO4	PO3	10

UNIT - IV						
7	a)	1. read x 2. if (x > 0) 3. a = x + 1 4. if (x <= 0) { 5. if (x < 1) 6. x = x + 1; goto (5) 7. else 8. a = x + 1 } 9. print a;		<i>CO4</i>	<i>PO3</i>	10
		For the above code, identify the All defs, All c-use, All p-use and All c-use/some p-uses associations for a variable 'a'.				
	b)	Explain the common paradigms of interfacing modules.		<i>CO1</i>		10
OR						
8	a)	Explain comparison of data flow test selection criteria with neat diagram.		<i>CO3</i>	<i>PO2</i>	10
	b)	Explain Incremental, Top down and Bottom up approaches to system integration as applicable to a Check-in request.		<i>CO1</i>		10
UNIT - V						
9	a)	Considering a website example, explain how a user is involved in acceptance testing.		<i>CO4</i>	<i>PO3</i>	10
	b)	Explain five views of software quality.		<i>CO1</i>		10
OR						
10	a)	Discuss the advantages and disadvantages of customer involvement in testing.		<i>CO3</i>	<i>PO2</i>	10
	b)	Illustrate ISO 9000: 2000 software quality standard.		<i>CO2</i>	<i>PO1</i>	10
