

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Branch: Information Science and Engineering

Course Code: 20IS6PCCNS

Course: Cryptography and Network Security

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Date: 05.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Discuss the main goals of security services in the context of network security.			<i>CO1</i>		05
		b)	Explain the operation of Ceaser Cipher with an algorithm. Derive the Cipher text using Ceaser cipher for the following plain text message “Enabling Transformation”. Key value: 4			<i>CO2</i>	<i>PO1</i>	05
		c)	Encrypt the message “We will meet tomorrow” using playfair cipher with a key “STORY”. Provide the rules of Encryption.			<i>CO2</i>	<i>PO1</i>	06
		d)	How do transposition techniques differ from substitution techniques?					04
			UNIT - II					
	2	a)	Illustrate the process of DES encryption and decryption with suitable diagram. Explain the steps involved in a single round of DES algorithm.			<i>CO1</i>		10
		b)	Describe the fundamental design principles that should be considered when creating a block cipher.			<i>CO1</i>		05
		c)	Write the steps involved in initializing the permutation table (S-box) during the initialization of RC4 stream cipher. Provide a detailed illustration of the key mixing process and its impact on the S-box.			<i>CO3</i>	<i>PO3</i>	05
			UNIT - III					
	3	a)	Explain Diffie-Hellman key exchange algorithm and solve the following scenario: In the Diffie-Hellman key exchange, users A and B agree on a common prime $q=11$ and a primitive root $a=8$. If user A's public key is $YA=5$, what is the corresponding private key XA ? Similarly, if user B's public key is $YB=4$, what is the corresponding private key XB ? What is the value of the shared secret key between A and B?			<i>CO2</i>	<i>PO1</i>	08
		b)	Outline the step-by-step procedure for generating a digest using SHA-512. Provide a comprehensive explanation of how an input message is handled, covering the padding scheme, processing of message blocks, utilization of the compression function, and the finalization steps.			<i>CO4</i>	<i>PO3</i>	08

	c)	List some common vulnerabilities or weaknesses in public-key cryptosystems that make them susceptible to cryptanalysis attacks?	CO1		04
UNIT - IV					
4	a)	Define a key distribution center (KDC). How does it facilitate symmetric key distribution in a network? Describe the role and functioning of a KDC in securely distributing symmetric keys.	CO1		08
	b)	Discuss Heartbeat protocol and its purpose in the context of SSL/TLS communication?	CO1		06
	c)	Explain the operations involved in TLS record protocol. Analyze how application data are segmented into records and encrypted for secure transmission?	CO5	PO2	06
	OR				
5	a)	Describe the key distribution process in a transparent key control scheme. Explain the steps involved in securely distributing symmetric keys between the communicating parties.	CO5	PO2	08
	b)	Explain the concept of the Heartbeat message in the Heartbeat protocol. How does it enable the detection of a live connection between a client and a server?	CO3	PO2	06
	c)	Discuss TLS Alert Protocol and its purpose within the TLS protocol suite?	CO4	PO3	06
	UNIT - V				
6	a)	Write the main services provided by IPsec (Internet Protocol Security) in securing IP communications. Discuss the significance of each service in ensuring confidentiality, integrity, and authenticity of data.	CO1		06
	b)	How does IPsec provide data confidentiality in Transport mode? Explain the process of encrypting the payload of an IP packet and the role of encryption algorithms and keys.	CO1		06
	c)	Identify the role of Security Associations (SAs) in the IPsec architecture? Analyze how SAs are established and maintained to enable secure communication between IPsec peers.	CO5	PO2	08
	OR				
7	a)	Identify the role of IPsec in ensuring data integrity in Tunnel mode. How are integrity algorithms used to detect any modifications to the encapsulated IP packets?	CO2	PO1	06
	b)	Analyze the process of encapsulating an IP packet in Tunnel mode using ESP. Discuss the role of new IP header, ESP header, and ESP trailer.	CO4	PO3	06
	c)	Analyze the process of generating secure digital signatures using DSA (Digital Signature Algorithm) approach. Discuss the key steps involved in DSA process in ensuring security and integrity of digital signatures.	CO5	PO2	08
