

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Branch: Information Science and Engineering

Course Code: 22IS6PCCNS

Course: Cryptography and Network Security

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Compute play fair cipher Keyword : ATHENS Encrypt the plain text : COMMUNICATE		CO2	PO1	6
		b)	Compute hill cipher Keyword: [2 3 4 5] consider row wise Encrypt the plain text : INFORM		CO2	PO1	6
		c)	Using DOUBLE transposition cipher, Decrypt the message “TRESAAEHMSSEIEXCSISTG” using Key: “ANALYST” OR (1 4 2 3 7 5 6) for the first round and Key: “CENTURY” OR (1 2 3 5 6 4 7) for the second round.		CO2	PO1	8
OR							
	2	a)	Identify the types of attacks on encrypted messages.		CO1	PO1	6
		b)	Use Hill Cipher to encrypt and decrypt the message “SHORTER EXAMPLE”. The key for encryption is “HILL” and a 2x2 matrix.		CO2	PO1	10
		c)	Compare specific and pervasive security mechanisms		CO1	PO1	4
UNIT - II							
	3	a)	Analyze Feistel Cipher Structure with a neat diagram		CO1	PO2	10
		b)	Perform Key generation, Encryption using S-DES. Details are given below, Plaintext:11100110 Key: 1010101110 IP: 2 6 3 1 4 8 5 7 E/P: 4 1 2 3 2 3 4 1 P10 = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] P8 = [6, 3, 7, 4, 8, 5, 10, 9]		CO2	PO1	10

$$P4 = [2, 4, 3, 1]$$

$$IP^{-1} = [4, 1, 3, 5, 7, 2, 8, 6]$$

$$S0 = 1 \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \\ 3 & 2 & 1 & 0 \\ 2 & 0 & 2 & 1 \\ 3 & 3 & 1 & 3 \end{bmatrix} \quad S1 = 1 \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \\ 2 & 0 & 1 & 3 \\ 2 & 3 & 0 & 1 \\ 3 & 2 & 1 & 0 \end{bmatrix}$$

OR

4 a) Explain stream generation of RC4 algorithm and give its strengths.

CO3 PO3 10

b) Perform Encryption and Decryption using S-DES. Details for computation are Plaintext: 10010111, Key : 1010000010

CO2 PO1 10

IP							
1	1	1	0	1	0	1	1
IP ⁻¹							
4	1	3	5	7	2	8	6
P8							
6	3	7	4	8	5	10	9
E/P							
4	1	2	3	2	3	4	1
P10							
3	5	2	7	4	10	1	9

$$S0 = 1 \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \\ 3 & 2 & 1 & 0 \\ 2 & 0 & 2 & 1 \\ 3 & 3 & 1 & 3 \end{bmatrix} \quad S1 = 1 \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \\ 2 & 0 & 1 & 3 \\ 2 & 3 & 0 & 1 \\ 3 & 2 & 1 & 0 \end{bmatrix}$$

UNIT - III

5 a) Consider a Diffie-Hellman scheme with a common prime $q = 353$ and a primitive root $\alpha = 3$. If user A chooses $X_A = 97$, and if user B chooses $X_B = 233$, Compute their respective public keys and their shared session keys?

CO4 PO2 6

b) In a public- key system using RSA, you intercept the ciphertext $C= 10$ sent to a user whose public key is $e=5, p=7, q=5$. What is the plaintext M ?

CO3 PO2 6

c) Illustrate the generation of message digest using SHA-512 Logic.

CO3 PO3 8

OR

6 a) Compare Asymmetric and Symmetric Encryption

CO3 PO2 6

	b)	Explain the working of Diffie Hellman algorithm. Compute (secret) keys with following values $q=23$, $\alpha = 7$ A and B discrete private keys $X_A=21$ and $X_B=4$ Calculate Y_A and Y_B	CO2	PO1	6
	c)	Use RSA Algorithm to generate key and encrypt the message $M=HI$ consider values for $p=53$, $q=59$, $e=3$	CO2	PO1	8
UNIT - IV					
7	a)	Illustrate the techniques for the distribution of public keys with a neat diagram.	CO1	PO2	10
	b)	Elucidate on SSL record protocol	CO3	PO2	10
OR					
8	a)	Explain : i) Key distribution using symmetric Encryption ii) Key distribution using asymmetric Encryption	CO4	PO4	10
	b)	Illustrate Handshake protocol with neat diagram and also explain all the phases in detail.	CO1	PO3	10
UNIT - V					
9	a)	Explain Direct digital signature algorithm and NIST digital signature algorithm	CO2	PO2	10
	b)	Elucidate on security associations and its database	CO2	PO2	10
OR					
10	a)	Provide SCHNORR Digital signature scheme. Elucidate on security policy database.	CO2	PO2	10
	b)	Derive protocol considerations in both INBOUND and OUTBOUND IP traffic processing	CO3	PO3	10
