

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

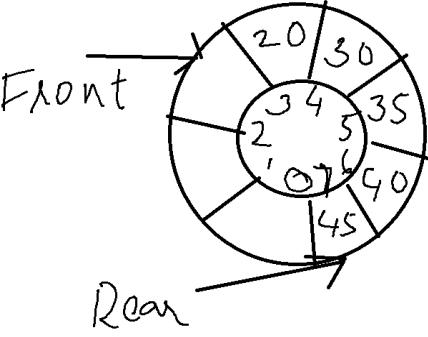
Programme: B.E.

Semester: VI

Branch: Institutional Elective

Duration: 3 hrs.

Course Code: 20IS6OEDSA


Max Marks: 100

Course: Data Structures and Algorithms

Date: 07.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define Data structures and discuss the differences between linear and non linear data structures.	CO1	PO1	04
		b)	Analyze the following code i) Specify how many bytes are allocated in the following code: char **a; if((a=malloc(10))!=NULL) {for(i=0;i<10;i++) a[i]=(char*) malloc(5); } ii) specify for a given linked list p, the function f returns 1 if and only if the elements in the list are _____ struct item { int data; struct item*next;}; int f (struct item*p) {return((p==NULL) ((p->next==NULL) ((p->data<=p->next->data)&&(p->next)));}	CO2	PO4	04
		c)	Give the node structure to create a singly linked list of integers and write the functions to perform the following: i) Create three node list with data 100, 200 and 300 ii) Insert a node with data values 25 in between the nodes having data values 100 and 200.	CO4	PO2	06
		d)	Develop a program to concatenate two linked lists.	CO2	PO4	06
UNIT - II						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	Convert an infix expression $((a/(b-c+d))^{(e-a)}*c)$ to postfix form.	CO4	PO1	06
		b)	Define recursion. Write recursive function for finding i) factorial of a number ii) fibonacci series for n terms	CO2	PO1	07

	c)	Implement a program to solve Tower of Hanoi puzzle recursively. The program should print all moves and also total number of moves taken to solve for n=3 disks.	CO2	PO2	07															
		OR																		
3	a)	Develop a program to find the least positive integer in an integer queue of size N.	CO2	PO2	06															
	b)	For the given circular queue shown below, write the values of front and rear in the table after each specified operation is performed. Queue full/empty conditions should be considered. 0-7 indicates array indicies	CO2	PO2	06															
		<table border="1" data-bbox="341 977 1167 1313"> <thead> <tr> <th>operation</th> <th>Front</th> <th>Rear</th> </tr> </thead> <tbody> <tr> <td>Insert 0</td> <td></td> <td></td> </tr> <tr> <td>Insert 10</td> <td></td> <td></td> </tr> <tr> <td>Insert 15</td> <td></td> <td></td> </tr> <tr> <td>Delete</td> <td></td> <td></td> </tr> </tbody> </table>	operation	Front	Rear	Insert 0			Insert 10			Insert 15			Delete					
operation	Front	Rear																		
Insert 0																				
Insert 10																				
Insert 15																				
Delete																				
	c)	List and explain different types of queues. Mention the applications of queue data structure. Also list the disadvantage of linear queue and explain how to overcome the disadvantage.	CO1	PO1	08															
		UNIT - III																		
4	a)	Define Binary search tree. Write an algorithm to delete a node in binary search tree	CO2	PO3	07															
	b)	What are Asymptotic notations, Explicate with example.	CO1	PO1	06															
	c)	Construct a binary search tree for the following list of elements and traverse the constructed tree using inorder and postorder traversal methods. 100, 20, 5, 90, 120, 110, 15, 30, 55, 150, 10	CO3	PO2	07															
		UNIT - IV																		
5	a)	Write an algorithm of bubble sort.	CO3	PO2	07															
	b)	Trace selection sort on the following input and count the number of comparisons done: ALGORITHMS	CO3	PO2	06															

	c)	Write the pseudocode of Merge sort algorithm (along with the merge).	CO3	PO2	07																		
		OR																					
6	a)	Write an algorithm to traverse the graph using Breadth First Search.	CO4	PO2	07																		
	b)	Discuss the source removal algorithm to obtain topological sort by considering an example.	CO2	PO1	06																		
	c)	Write the pseudocode of the quick sort algorithm along with its partition. Trace quicksort on this input 17,10, 23,45,8,12,54,75,13	CO3	PO2	07																		
		UNIT - V																					
7	a)	Write an algorithm to construct a min heap using bottom up approach. Apply the same on the following input 2,9,7,6,5,8	CO4	PO1	07																		
	b)	Analyze the algorithm for computing Binomial coefficient $C[n,k]$ using dynamic programming approach. Draw the binomial coefficient table for (8,3)	CO4	PO1	07																		
	c)	Apply the bottom up dynamic programming algorithm to the following instance of Knapsack problem, along with the steps. <table border="1" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th>Item</th> <th>weight</th> <th>value</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>2</td> <td>Rs 5</td> </tr> <tr> <td>2</td> <td>1</td> <td>Rs 6</td> </tr> <tr> <td>3</td> <td>2</td> <td>Rs 18</td> </tr> <tr> <td>4</td> <td>3</td> <td>Rs 22</td> </tr> <tr> <td>5</td> <td>4</td> <td>Rs 28</td> </tr> </tbody> </table> Capacity W=6	Item	weight	value	1	2	Rs 5	2	1	Rs 6	3	2	Rs 18	4	3	Rs 22	5	4	Rs 28	CO1	PO1	06
Item	weight	value																					
1	2	Rs 5																					
2	1	Rs 6																					
3	2	Rs 18																					
4	3	Rs 22																					
5	4	Rs 28																					
