

B.M.S. College of Engineering, Bengaluru-560019

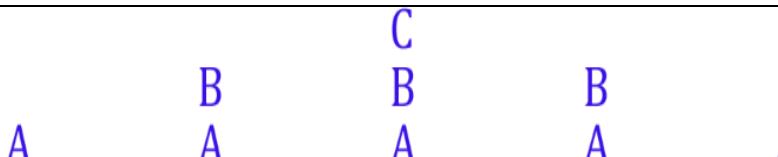
Autonomous Institute Affiliated to VTU

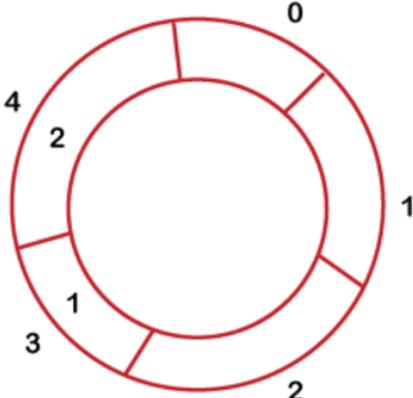
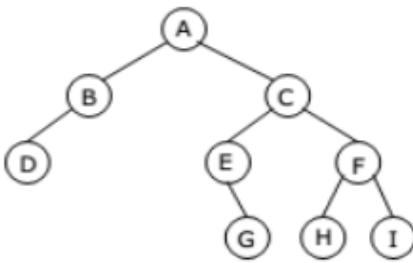
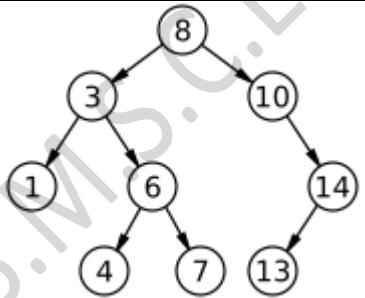
January / February 2025 Semester End Main Examinations

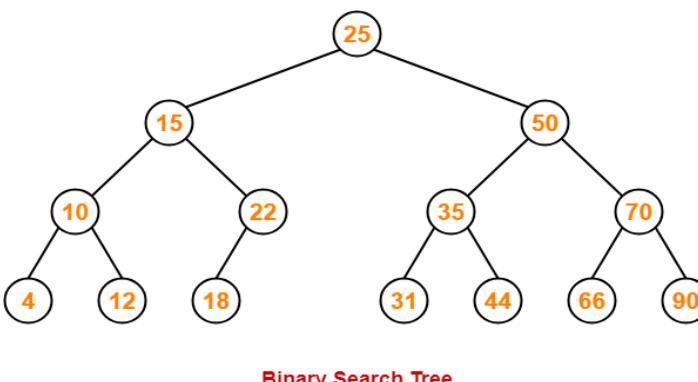
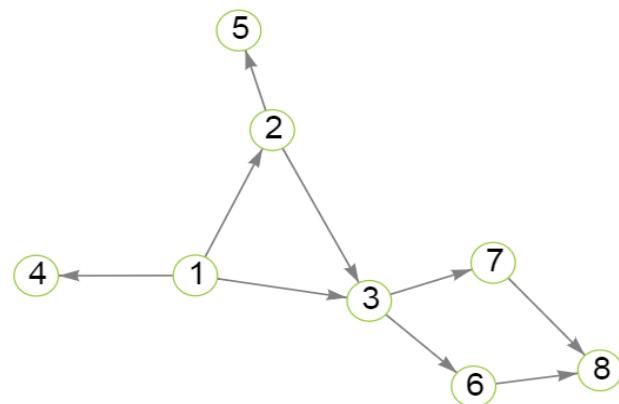
Programme: B.E.

Semester: VI

Branch: Institutional Elective


Duration: 3 hrs.




Course Code: 22IS6OEDSA



Max Marks: 100

Course: Data Structures and Algorithms

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
1	a)	Write the syntax and use of the following functions: Calloc() Malloc()	CO1	PO1	04	
	b)	With suitable illustration, give the Classification of Data Structures .		PO1	08	
	c)	Write a program to depict Linked list operation to insert 25 in between 20 and 30 . Provided Linked List is 20-30-50-40 .	CO2	PO2	08	
		OR				
2	a)	Define Data structures. Identify the type of data structure for the following i. Stack ii. Graph iii. Array	CO2	PO2	08	
	b)	Using Singly linked list perform i. insert at end ii. insert at beginning	CO2	PO2	08	
	c)	Discuss any two applications of Linked List	CO2	PO2	04	
		UNIT - II				
3	a)	Write the code snippet to illustrate push and pop functions for a stack data structure.	CO1	PO1	06	
	b)	 For the given illustration of Stack, write suitable calls of Stack operations.	CO2	PO2	06	
	c)	Distinguish between Iteration and recursion . Write a recursive tree for the Fact(5) .	CO2	PO2	08	
		OR				

4	a)	Write a program to perform Fibonacci series using recursive code.	CO2	PO2	06
	b)	Queue is a FIFO data structures with front and rear pointers used to depict operations on queue. Explain the usage of these pointers with suitable illustrations.	CO2	PO2	06
	c)	Write the front and rear pointers for the circular Queue of size 5 for the given snapshot. queue empty states?	CO2	PO2	08
		What are the conditions for queue full and queue empty states?			
UNIT - III					
5	a)	Define Binary Search Tree . Write the various traversals for the tree	CO1	PO1	06
	b)		CO1	PO1	06
		Identify if the given tree is a BST . If yes, can we insert node 20 onto the right branch of node 1 ? Justify your answer suitably.			
	c)	What is an Algorithm ? Write a note on the Framework for Analysis of algorithm efficiency .	CO1	PO1	08
		OR			
6	a)	List the applications of Binary Search Trees.	CO1	PO1	05
	b)	Define all the 3 types of asymptotic notations. Also identify the type of function for the following i. Log n ii. N	CO1	PO1	08

		<p>iii. N^2 iv. 1</p>			
	c)	<p>For the given BST perform the operations</p> <p style="text-align: center;">Binary Search Tree</p> <p>i. Insert 1 ii. Insert 9 iii. Delete 30 iv. Delete 15</p>	CO2	PO2	07
		UNIT - IV			
7	a)	<p>Differentiate between DFS and BFS.</p> <p>Perform DFS for the given graph. Consider 1 as the source vertex. Does choosing of a different source node change the traversals? Justify.</p>	CO1	PO1	10
	b)	<p>Write an algorithm for Bubble sort. Which algorithmic technique is used in this sorting technique?</p> <p>Perform bubble sort for the following numbers.</p> <p>27 36 92 46 61 31</p>	CO2	PO2	10
		OR			
8	a)	<p>Write the Selection sort algorithm. Perform the same for the given sequence</p> <p>14 33 27 10 35 19 44 42</p>	CO2	PO2	10

	b)	<p>Can we perform sorting using divide and conquer? Justify your answer suitably.</p> <p>Perform Merge sort for the following numbers.</p> <p style="text-align: center;">56 10 23 9 34 32</p>	<i>CO2</i>	<i>PO2</i>	10
		UNIT - V			
9	a)	<p>Construct a max heap for the given numbers</p> <p style="text-align: center;">8 3 2 7 9 1 4</p> <p>Perform Heap sort from the generated heap.</p>	<i>CO2</i>	<i>PO2</i>	10
	b)	<p>For the given graph, predict the shortest paths using Floyd's Algorithm.</p>	<i>CO2</i>	<i>PO2</i>	10
		OR			
10	a)	<p>Solve the knapsack problem by Dynamic programming technique</p> <p>Consider number of objects=4, Weight={1,5,3,4} for the items with the number (1,2,3,4), Capacity of Knapsack=8</p>	<i>CO2</i>	<i>PO2</i>	10
	b)	<p>i) Briefly explain different variations of transform and conquer technique, explain each with an example</p> <p>ii) Define Heap and illustrate the steps to sort elements using Heap Sort</p>	<i>CO2</i>	<i>PO2</i>	10
