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WHAT IS CLASSIFICATION ?
Classification is the type of supervised learning

● Identify the class to which a new observation belongs to.





WHAT IS CLASSIFICATION ?
Classification is the type of supervised learning

● Identify the class to which a new observation belongs to.

Examples of Classification

● Classifying emails as spam or not spam
● Classifying flowers of a particular species like the Iris Dataset
● Classifying a credit card transaction as fraudulent or not
● Face recognition

There are 2 types of Classification: 
• Binary or binomial
• Multi-Class
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There are 2 types of Classification: 
• Binary or binomial
• Multi-Class



Goal - Classification

The goal of this session is to classify 
handwritten digits



BINARY AND MULTICLASS CLASSIFICATION

5

Not 5

Binary Classification Multiclass Classification

Classification is done between 
2 classes

Classification is done  between 
multiple classes



● In this problem, we will use MNIST 
dataset

○ Set of 70,000 small images

○ Each image is grayscale (black 
& white)

○ 28 by 28 pixels

HANDWRITTEN DIGITS CLASSIFIER - DATASET

MNIST Dataset  (Modified National 
Institute of  Standards and Technology)



HANDWRITTEN DIGITS CLASSIFIER - DATASET

Every Image has Label 
Associated

● MNIST dataset is also called

○ “Hello World” of Machine 
Learning

● We have to build a model 

using this  labelled dataset





� Datasets loaded generally have a similar dictionary 
structure:
⚫ A DESCR key describing the dataset
⚫ A data key containing an array with one row per instance and one 

column per feature
⚫ A target key containing an array with the labels

DATASET







DATASET

● Each image
○ 28 X 28 pixels
○ 784 features

● There are 70000 such images making the dataset dimension
○ 70000 X 784

○ Each feature represents one pixel’s intensity, from 0 to 255.

Let’s look at these arrays:
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TRAINING AND TEST DATASET

● We split the data into
○ Training set - Contains 60,000 out of 70,000 samples
○ Test set - Contains 10,000 out of 70,000 samples

● We train the model on training set and evaluate the performance of the 
model on test set

Entire 
dataset  
(70000 
images)

Training Dataset (60000 
images) – shuffling is 
important

Test Dataset  
(10000 images)





TRAINING A BINARY CLASSIFIER

● What is a Binary Classification?
○ Binary or binomial classification is the task of classifying the 

elements of a given set into two groups (predicting which group each 
one belongs to) on the basis of a classification rule.

Lets try to identify one digit example, the number 5. This “5-detector” will 
be an example of a binary classifier.

5
Example:

Input: 
Image

Not 5

Output: 
Classification

Let’s create the target vectors for this classification task:



STOCHASTIC GRADIENT DESCENT (SGD) CLASSIFIER

Classifier used: Stochastic Gradient Descent (SGD) Classifier 
using Scikit-Learn’s SGDClassifier class.

Training a Binary Classifier using SGD

● Stochastic Gradient Descent (SGD) Classifier

○ Capable of handling large datasets

○ Deals with training instances independently

○ Well suited for online training

Let’s create an SGDClassifier and train it on the whole training set:







TESTING SGD CLASSIFIER IN SCIKIT LEARN

>>> some_digit = X[0] # Taking the 11th image
>>> 
sgd_clf.predict([some_digit])  
array([True])

The classifier guesses that this image represents a 5 (True).



PERFORMANCE MEASURE - METHODS



PERFORMANCE MEASURE - CROSS VALIDATION

What is cross-validation?

● It involves splitting the training set into K distinct subsets called folds,  
then training and evaluating the model K times, picking a different fold 
for  evaluation every time and training on the other K-1 folds.

● The result is an array containing K evaluation scores.

cross_val_score
cross_val_score() function in scikit-learn can be used to perform cross 
validation.



Performance measure - Cross 
Validation

Here k = 10



PERFORMING CROSS VALIDATION IN SCIKIT LEARN

>>> from sklearn.model_selection import 
cross_val_score

>>> cross_val_score(sgd_clf, X_train, y_train_5, 
cv=3,  scoring="accuracy")

Classifier object No.of foldsScoring parameter Training data Labels

(Here, scoring parameter is accuracy)









ACCURACY

Accuracy is generally not the preferred performance measure for classifiers, especially when you are dealing 
with skewed datasets (when some classes are much more frequent than others).



DUMB CLASSIFIER

� Dumb classifier that just classifies every single image in the “not-5” 
class.







PERFORMING CROSS VALIDATION IN SCIKIT 
LEARN

Accuracy = 95 % Accuracy = 90 %

SGDClassifier
Dumb Classifier -  
Never5 Classifier
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● Accuracy may not be a good performance measure when dealing 
with skewed  datasets

LEARNINGS??





PERFORMANCE MEASURES - CONFUSION MATRIX
● What is confusion matrix?

○ The general idea is to count the number of times instances of class A  
are classified as class B.

○ Can be better than simple accuracy. 
○ For example: to know the number of times the classifier confused 

images of 5s with 3s

TN = True Negative  
TP = True Positive  
FN = False Negative  
FP = False Positive
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� In-order to compute the confusion matrix we would 
consider set of predictions so that they can be compared 
to the actual targets.

� Keep test set aside and apply cross_val_predict() 
function on train set.

cross_val_predict() performs K-fold cross-validation, and 
returns the predictions made on each fold.
Confusion matrix is printed using confusion_matrix() 
function. To this we pass  the target classes (y_train_5) and 
the predicted classes (y_train_pred):



CONFUSION MATRIX - EXAMPLE

For ‘5’ and ‘Not 5’ classifier
● Each row in a confusion matrix represents an actual class, while each 

column represents a predicted class.
● The first row of this matrix considers non-5 images (the negative class):

○ 53,272 of them were correctly classified as non-5s (they are called  
true negatives)

○ The remaining 1,307 were wrongly classified as 5s (false positives).

Not 5 53272 1307 54579

5 1077 4344 5421

Total 54349 5651 60000

Actual

Prediction

Not 5 5 Total

Confusion  
Matrix

False Positive (FP)True Negative (TN)

False Negative (FN)
True Positive (TP)



For ‘5’ and ‘Not 5’ classifier

● The second row considers the images of 5s (the positive class):
○ 1,077 were wrongly classified as non-5s (false negatives)
○ The remaining 4,344 were correctly classified as 5s (true positives).

Actual

Prediction

Not 5

5

Total

Not 5 5 Total

53272 1307 54579

1077 4344 5421

54349 5651 60000

Confusion  
Matrix

True Negative (TN) False Positive (FP)

False Negative (FN)
True Positive (TP)



� A perfect classifier would have only true positives and 
true negatives, so its confusion matrix would have 
nonzero values only on its main diagonal (top left to 
bottom right):

� The confusion matrix gives a lot of information, but 
sometimes we may prefer a more concise metric. An 
interesting one to look at is the accuracy of the 
positive predictions; this is called the precision of the 
classifier











Performance measures - Precision and 
recall
‘5’ and ‘Not 5’ classifier



�True - Positive means the classifier correctly classified the Positive class. 
� True - Negative means the classifier correctly classified the Negative  

class.
�False - Positive means the classifier incorrectly classified a Negative

class as Positive Class.

�False - Negative means the classifier incorrectly classified a Positive class 
as Negative Class.

Recall, also called sensitivity or the true positive rate (TPR):



Precision and recall in scikit-learn

>>> from sklearn.metrics import precision_score,  
recall_score
>>> precision_score(y_train_5, 
y_train_pred) 
 0.76871350203503808
>>> recall_score(y_train_5, y_train_pred)  
0.79136690647482011





LET’S SEE ONE MORE EXAMPLE OF CONFUSION MATRIX OF 
MODEL  PREDICTING IF SOMEONE HAS CANCER OR 

NOT



Cancer - No Cancer - Yes

Cancer - No 50 1
0

Cancer - Yes 5 100

Actua
l

PERFORMANCE MEASURES- CONFUSION 
MATRIX

PREDICTED

TN FP

FN TP



Cancer - No Cancer - 
Yes

Cancer - No 50 10

Cancer - 
Yes

5 100

Actua
l

PERFORMANCE MEASURES- CONFUSION 
MATRIX

PREDICTED

Total  
Predictions 

=  110



Cancer - No Cancer - 
Yes

Cancer - No 50 10

Cancer - 
Yes

5 100

Actual

PERFORMANCE MEASURES- CONFUSION 
MATRIX

PREDICTED

Correct  
Predictions 

=  100

Precision -  
100 out of 

110
= 0.91



Cancer - No Cancer - 
Yes

Cancer - No 50 10

Cancer - 
Yes

5 100

Actua
l

PERFORMANCE MEASURES- CONFUSION 
MATRIX

PREDICTED

Total Patients 
Having  Cancer 
= 105

Model’s Predictions 
as  Having Cancer = 
100Recall -  100 out of 105

= 0.95













● ‘5’ and ‘Not 5’ classifier

F1 score = harmonic mean of precision and 
recall

Prediction

Actual

Not 5 5 Total Recall

Not 5 53272 1307 54579

5 1077 4344 5421 = 4344 / 5421

Total 54349 5651 60000

Precision = 4344/5651
= 76.87 %

F1 score = 0.78468



● F1 score using scikit-learn

>>> from sklearn.metrics import 
f1_score
>>> f1_score(y_train_5, y_train_pred)



Say we have to build a model which detects if a video is safe for 
kids or not.

Question - High Precision or High 
Recall?



1 - Not 
Safe

2 - Safe 3 - Not Safe

PERFORMANCE MEASURES- F1 SCORE

4 - 
Safe

5 - Not Safe 6 - 
Safe

High precision means if the model classifies video 4 and video 6 as safe for kids, 
they are actually  safe for kids.

High Precision

In high precision, we are okay if the model is not able to classify video 2 as safe for 
kids but  whichever videos it classifies as safe for kids they are actually safe.



PERFORMANCE MEASURES- F1 SCORE

High recall means the model will try to maximize the number of videos that are 
classified as safe.

1 - Not Safe

4 - Safe 5 - Not Safe 6 - Safe

2 - Safe 3 - Not Safe

High 
Recall



PERFORMANCE MEASURES- F1 
SCORE

In high recall model may mistake while classifying video as safe. This is because recall 
is more about  classifying all the “safe for kids” videos as “safe” rather than classifying 
all the videos correctly.

1 - Not 
Safe

4 - 
Safe

5 - Not Safe

High Recall
6 - 
Safe

2 - 
Safe

3 - Not 
Safe



PERFORMANCE MEASURES- F1   SCORE

1 - Not 
Safe

2 - Safe 3 - Not 
Safe

4 - 
Safe

6 - 
Safe

High Precision or High Recall?

5 - Not 
Safe



PERFORMANCE MEASURES- F1 SCORE

We would prefer a model which has high precision and low recall. It is okay if the 
model rejects  many good videos but keeps only really safe ones

5 - Not Safe 6 - Safe

1 - Not 
Safe

2 - 
Safe

3 - Not 
Safe

4 - 
Safe

High Precision, Low 
Recall



Say we have to build a model which detects shoplifters on the basis of 
surveillance  image. In case, someone is marked as shoplifter, we 
manually examine.

Question - High Precision or High 
Recall?



Performance Measures - F1  Score

High Recall

We would prefer the model to have high recall even if the precision is low because 
our goal is to  catch almost all the shoplifters.

In the high recall, the security guard might catch and examine some non shoplifters 
also but we will  achieve our goal of catching almost all the shoplifters.



Precision Recall

PERFORMANCE MEASURES- F1 SCORE

Now you may think that we can have both high precision and high recall in a good model. 
But  unfortunately, we can’t have both high precision and high recall at the same time.



Precision Recall

PERFORMANCE MEASURES- F1 
SCORE

Increasing the precision reduces recall and



Precision Recall

PERFORMANCE MEASURES- F1 SCORE

Vice versa



PERFORMANCE MEASURES - PRECISION VS RECALL

Performance measure  
(down)

Detect videos that  
are unsafe for kids

Detect shoplifters  
in surveillance  
images

Precision High Low

Recall Low High

FP should be low, 
FN  can be high

FP can be high, 
FN  should be low

Increasing precision reduces recall, and vice versa. This is called 
the  precision/recall tradeoff.

● Different use cases may require different precision and recall



Performance Measures- Precision / Recall 
Tradeoff

To understand this tradeoff, lets see 
how SGDClassifier works



Ye
sScore >

Threshold
“5” - Positive 
Class

Classifier

No

“Not 5” - Negative Class

Training 
Set

Decision  
Score

PERFORMANCE MEASURES- PRECISION / RECALL 
TRADEOFF

Decision Threshold - decided by the  
classification algorithm



PRECISION / RECALL TRADEOFF - THRESHOLDS

● SGD Classifier makes its classification decision, for instance it computes 
a score based on the decision  function
○ Score above a certain threshold is classified as positive class
○ Score below a certain threshold is classified as negative class

● Thresholds can be set to achieve certain precision and recall.
Let us observe the above example : shows a few digits positioned from the 
lowest score on the left to the highest score on the right.



PRECISION / RECALL TRADEOFF

TN - TN - TN - TN - TP - FP - TP - TP - FP - TP - TP - TP

TN = 6, TP = 6, FN = 0, FP = 2

Precision = 6/ (6+2) = 
75%  Recall = 6/(6+0) = 

100%



TN - TN - TN - TN - FN - TN - FN - TP - FP - TP - TP - TP

TN = 5, TP = 4, FN = 2, FP = 1

Precision = 4/ (4+1) = 80%
Recall = 4/ (4+2) = 67%



PRECISION / RECALL TRADEOFF

?

TN - TN - TN - TN - FN - TN - FN - FN - TN - TP - TP - TP

TN = 6, TP = 3, FN = 2, FP = 0

Precision = 3/ (3+0) = 
100%  Recall = 3/(3+3) = 

50%



Decision_function() method returns a score for each instance.
Then use any threshold for which we want to make predictions based 
on those scores:

The SGDClassifier uses a threshold equal to 0 and returns True. 
Let’s raise the threshold:

This confirms that raising the threshold decreases recall. The image 
actually represents a 5, and the classifier detects it when the 
threshold is 0, but it misses it when the threshold is increased to 
8,000.

Scikit-Learn does not allow to set the threshold directly, but it does 
provide access to the decision scores to make predictions. 



How to decide the best threshold?

● Get the scores of all the training dataset using cross_val_predict with  
decision_function as function

● Compute the precision and recall for all possible thresholds using  
precision_recall_curve()

● Plot both precision and recall for the thresholds using matplotlib.

● Select the threshold value that gives the best precision/ recall tradeoff.



● Plotting precision/ recall curve using Scikit-Learn

>>> def plot_precision_recall_vs_threshold(precisions, 
recalls,  thresholds):

plt.figure(figsize=(18,7))
plt.plot(thresholds, precisions[:-1], "b--", 
label="Precision")  plt.plot(thresholds, recalls[:-1], "g-", 
label="Recall")  plt.xlabel("Threshold")
plt.legend(loc="upper 
left")  plt.ylim([0, 1])

>>> plot_precision_recall_vs_threshold(precisions, 
recalls,  thresholds)
>>> plt.show()● Precision increases while recall decreases with increase in 

threshold
● Scikit enables the user to get the scores from the classifier



Precision / Recall Tradeoff

Q. How to decide the best threshold? What is the best threshold for below?

Precision



Precision and recall versus the 
decision  threshold

Recall

PRECISION / RECALL 
CURVE



Precision and recall versus the 
decision  threshold

Precision

PRECISION / RECALL 
CURVE



Precision and recall versus the 
decision  threshold

Recall

PRECISION / RECALL 
CURVE



Which  threshold value to 
use?

PRECISION / RECALL 
CURVE



PRECISION / RECALL CURVE



BUILDING MODEL WITH DESIRED PRECISION

● So let’s say you want to build a classifier with 90% precision
○ Then first select the threshold value which gives you 90% 

precision
○ Then build classifier using this threshold

>>> threshold_90_precision = thresholds[np.argmax(precisions >= 0.90)]
>>> y_train_pred_90 = (y_scores >= threshold_90_precision)

This classifier will give 
90%  precision



BUILDING MODEL WITH DESIRED PRECISION

● Verify it

>>> precision_score(y_train_5, y_train_pred_90)  
0.9000380083618396

>>> recall_score(y_train_5, y_train_pred_90)  
0.4368197749492714



I want a model 
with  99% 
precision

ML EngineerBoss



At what 
recall? :)

ML 
Engineer

Boss



REVEW OF PRECISION/ RECALL TRADEOFF

● The user can subsequently set the threshold and obtain the 
classification  by a simple comparison.
>>> threshold = 200000

> threshold)>>> y_some_digit_pred = 
(y_scores
>>> y_some_digit_pred  
array([False], 
dtype=bool)

● Hence, by selecting an appropriate threshold, the user can obtain the  
desired precision. However, the best precision may not have the 
best  recall.



� Another way to select a good precision/recall trade-off is 
to plot precision directly against recall, as shown in 
figure.



We see that precision really starts to fall sharply around 
80% recall. 
We probably want to select a precision/recall trade-off just 
before that drop—for example, at around 60% recall. But 
of course, the choice depends on your project.

Suppose you decide to aim for 90% precision. 
We look the first plot and search for the lowest threshold 
that gives you at least 90% precision.
(np.argmax() will give you the first index of the maximum 
value, which in this case means the first True value):



� To make predictions (on the training set for now), instead 
of calling the classifier’s predict() method, you can run 
this code:





THE ROC CURVE

� The receiver operating characteristic (ROC) curve is 
another common tool used with binary classifiers.

� the ROC curve plots the true positive rate (another name 
for recall) against the false positive rate (FPR).

● ROC Curve Similar to F1 score but uses a different metric
● Uses True Positive Rate (TPR) = Recall = TP / (TP + FN)
● False Positive Rate (FPR) = FP / (FP + TN)

= 1 - True Negative Rate (TNR)
● FPR is the ratio of negative instances that are incorrectly classified 

as positive.
● True Negative Rate (TNR) = TN / (FP + TN) 
● The TNR is also called specificity.
● Receiver Operating Characteristics (ROC) plots:  TPR versus FPR



PERFORMANCE MEASURES - ROC CURVE

• ROC curve plots recall versus 1-specificity.
To plot the ROC curve, you first use the roc_curve() function 
to compute the TPR and FPR for various threshold values:

Then you can plot the FPR against the TPR using Matplotlib.



PERFORMANCE MEASURES - ROC CURVE

Dotted line = purely 
random classifier





PERFORMANCE MEASURES - ROC CURVE

● Higher the recall (TPR True Positive Rate), higher is the FPR 

(False  Positive Rate)

● Dotted line = purely random classifier

● Good classifier stays away from the dotted line towards top-left corner
● A perfect classifier shall have a ROC Area Under the Curve (AUC) equal  

to 1 whereas a purely random classifier shall have ROC AUC = 0.5.

Scikit-Learn provides a function to compute the ROC AUC:
>>> from sklearn.metrics import roc_auc_score
>>> roc_auc_score(y_train_5, y_scores)
0.9611778893101814



REVIEW OF THE ML PROCESS - BINARY CLASSIFIER

● Divide the dataset into training and test samples

● Train the binary classifier

● Choose the appropriate metric for the task (recall, precision, F1, 
ROC)

● Select the precision/ recall tradeoff that fits the needs

● Compare various models using ROC curves and ROC AUC curves



MULTICLASS CLASSIFICATION(MULTINOMIAL 
CLASSIFICATION)

● Binary classifiers distinguish between two classes

● Algorithm such as Logistic Regression or Support Vector Machine 

classifiers are strictly binary classifiers.

● While multi-class classifiers (also called multinomial classifiers)  can 

distinguish between more than two classes. 

● Algorithm such as SGD classifiers, Random Forest classifiers, and naive 

Bayes classifiers can handle multiple classes.





The various strategies that we can use to perform multiclass 
classification with multiple binary classifiers.

1. One-versus-all (OvA) strategy also called  
one-versus-the-rest(OvR) -                         
for example,

a. For eg. to classify the digit images into 10 classes (from 0 to
9) one way is to train 10 binary classifiers, one for each digit  
(a 0-detector, a 1-detector, a 2-detector, and so on).

b. Then when you want to classify an image, you get the  
decision score from each classifier for that image and you  
select the class whose classifier outputs the highest score.

MULTICLASS CLASSIFICATION





0 1 2 3 4

MULTICLASS CLASSIFICATION

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

2 vs All classifier

1 vs All classifier

3 vs All classifier

4 vs All classifier

5 vs All classifier



2. One-versus-one (OvO) strategy
a. This is another strategy in which we train a binary classifier  

for every pair of digits: one to distinguish 0s and 1s, another  
to distinguish 0s and 2s, another for 1s and 2s, and so on.

b. If there are N classes, you need to train N × (N – 1) / 2  
classifiers.

MULTICLASS CLASSIFICATION



⇣ 

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 vs 3 classifier

1 vs 3l classifier

1 vs 4 classifier

1 vs 5 classifier

4 vs 5 classifier



ERROR ANALYSIS

● Once the model (classifier) is identified, it can be improved by analyzing 
the  types of errors it makes

● For the previous multiclass classification example of classifying images of  
digits into digit labels, it can be done by observing the confusion matrix and  
plotting it on the graph



ERROR ANALYSIS

● Looks fairly good since  most 
images are on the  diagonal

● 5s looks darker than  other digits 
- Q. What  are the possible 
reasons?
○ Fewer 5s in the  dataset
○ Classifier does not  perform 

well on 5s
○ Both (Ans)



ERROR ANALYSIS

● We remove the possibility of fewer 5s in the dataset by normalizing it by  
the number of samples in each dataset

>>> row_sums = conf_mx.sum(axis=1, keepdims=True)
>>> norm_conf_mx = conf_mx / row_sums
>>> np.fill_diagonal(norm_conf_mx, 0)
>>> plt.matshow(norm_conf_mx, cmap=plt.cm.gray)
>>> plt.show()



Observations:
1. 8 and 9 columns are  bright: 

1. many digits  misclassified as 8 and 9
2. many 8 and 9 misclassified  as other digits

3. (3,5) and (5,3) are  abnormally bright:  confusion between 3 
and 5

Possible solutions:
1. Gather more training data for 

8s  and 9s
2. Pre-process images to make  

certain features stand out more
3. Analyzing individual errors



Analyzing individual errors (plotting 3s and 5s)

Actual 3,
Predicted 3

Actual 5,
Predicted 3

Actual 3,
Predicted 5

Actual 5,
Predicted 5

Some written badly, most are errors. What can we do about the  
errors?



Observation:

● Some digits are written badly while most are errors in  
classification (between 3s and 5s).

● SGDClassifier assigns a weight per class to each pixel 
and  calculate the total score for a particular class

● Since 3s and 5s differ by a few pixels, the classifier is easily  
confused - Main difference between 3 and 5 is the position of the  
straight line

● Classifier is quite sensitive to image shifting and rotation

● Solution: Preprocess the image to ensure that they are  well-centered 

and not rotated

Possible Solution


