UNIT -2
CLASSIFICATION

Introduction

Build Model with MNIST Dataset

Training a Binary Classifier

Performance Measures
Cross Validation
Confusion Matrix
Precision & Recall
Precision/Recall Trade-off
ROC Curve

Types of Classification —
Multiclass Classification

Error Analysis

Classification

Regression

Unsupervised

/
/’

Machine Learning Sl
Ry ~
\ Learn Incrementally?

How they generalize?

WHAT 1S CLASSIFICATION ?

Classification is the type of supervised learning

e Identify the class to which a new observation belongs to.

u Cat

Not Cat

Cat or Not Cat Classifier

What is Classification ?

Technology

-
i
.
-
.
-
SR
"o - -

Acme Article

Sports

Entertainment

News Article Classifier

WHAT 1S CLASSIFICATION ?

Classification is the type of supervised learning

e Identify the class to which a new observation belongs to.

Examples of Classification

Classifying emails as spam or not spam

Classifying flowers of a particular species like the Iris Dataset
Classifying a credit card transaction as fraudulent or not

Face recognition

There are 2 types of Classification:

* Binary or binomial
* Multi-Class

So how do we train the model in classification?

LABELED
IMAGES FOR
BuILDING
MOoODEL

Apple Banana Apple Kiwi Grapes

Split images into training and test
set

oy
Banan Grape Kiwi |5 e
a S pp
Training Set - 80% Test Set - 20%
Data Data

Using training set
we build the
model

‘o

]

-

Apple Banana Apple Kiwi Grapes

LABELED
IMAGES FOR
BUILDING
MODEL

Split images into training and test
set

|
\/ <
Apple Banana Grapes Kiwi Apple
Training Set - 80% Test Set - 20%
Data Data

Using test set we
evaluate
performance of model

PREDICTIONS

' —) —— Apple

\— — ——) Banana
Images without Model's
Label Model Predictions

Fruits

Classifier ‘

There are 2 types of Classification:
* Binary or binomial
* Multi-Class

Classification Types é

“ Cat

Not Cat

Binary Classification -
Two Classes

Multi Class Classification -
Multiple Classes

Goal - Classification

The goal of this session is to classify
handwritten digits

BINARY AND MULTICLASS CLASSIFICATION

Binary Classification Multiclass Classification

: 7—>7 5%5
5<Not5 8%85%3

2%2 4%4

Classification 1s done between Classification 1s done between
2 classes multiple classes

HANDWRITTEN DIGITS CLASSIFIER - DATASET

e |n this problem, we will use MNIST
dataset

o Set of 70,000 small images

o Each image is grayscale (black
& white)

o 28 by 28 pixels

label = 4
label = 3
3
label = 3
label = 8

MNIST Dataset (Modified National
Institute of Standards and Technology)

HANDWRITTEN DIGITS CLASSIFIER - DATASET

MNIST dataset is also called

o “Hello World” of Machine

Learning
We have to bui

using this labe

d a model

led dataset

label = 5 label = 0 label = 4 label =1 label =9

SRo

label = 2 label = 1 label = 3 label =1

2 oEID

label = 3 label = 5 label = 3 label = 6

label = 7 label = 2 label = 8 label = 6 label =9

Every Image has Label
Associated

e

Handwritten Digits Classifier

Model classifies the image
Input image Model into one of the digits between
Oand 9 9

Model's

Multiclass Classification orediction

DATASET

>>> from sklearn.datasets import fetch_openml

>>> mnist = fetch_openml('mnist _784', version=1)

>>> mnist. keys()

dict_keys(['data', 'target', 'feature names', 'DESCR', 'details',
'categories', 'url'])

Datasets loaded generally have a similar dictionary
structure:
A DESCR key describing the dataset

A data key containing an array with one row per instance and one
column per feature

A target key containing an array with the labels

Handwritten Digits Classifier - Training Process

label =5

o
o
o
'S

o o o
o o
- = \ .
| 0 1
y— [

o
O

ry;

N Y 77
d Tabular form -
label = 3 IaS label = 3 label = 6 lﬁ ROWS aﬂd CO|UmﬂS
777

o
~J
o
N
3
L
Il

o
o
o
3
©

Instances, Features
and Labels?

)

Handwritten Digits Classifier - Training Process

label = 5 label = 0

SO

La b€| label = 2 label = 1

o
o
e
I

w

label = 5

o
o
o
I

~
o
o
®
I

N

Each image is an instance

Features?

DATASET

Let’s look at these arrays:

>>> X, y = mnist["data"], mnist["target"]
>>> X.shape

(70000, 784)

>>> y.shape

(70000,)

e FEach image
o 28 X 28 pixels
o 784 features

e There are 70000 such images making the dataset dimension
o 70000 X 784

o Each feature represents one pixel’s intensity, from 0 to 255.

O 0 0 0 0 0 0 0O O O 0O 0O O O O 0 0 0 O OCOTUOU D OU O WO WOT GOOWO
0 0 0 0 0 0 0 0O O 0O O O O O OCOOUOT OO O OO OO OO O OU DOU OU OFOWD

0o 0 00 00O O O O 0O OO O OCOOUOU OO OD DO OU OOU OU OU DOUOOWO

© 0 0 0 0 0 00O OO O 0O 0O O 0 0 0 0 OCO OO DO O O WOUOOWD

0 0 0 0 0 0O OO O OO OC O OO O O OO OO OO O OO OOU O OO OTUGOFDO

0 0 0 0 0 0 O O O O 4 6214618225425418117613915 0 0 0 0 0 0 0 o
0 0 0 0 0 0O O 0O O 34 18625321720813613613616623299 0 0 0 0 0 0 o0 0O

0 0 0 0 0 0 O O 61242208 1M

18 3210743 0 0 0 0 0 O

13 191 181

3 00 0 0 O

6 0 0 0 0 0 O

0 0 0 0 0 O O O 15624223 0 0 0 0 0 0 0

o
o
o
o
o
o
o
&
8
3
x
o
(&)
o
o
o
™
3
&
~
-
o
o
o
o
o
o
o
o

-
w
~
-
o~
&
-
o
o
(&)
o
L]
&
Py
3
~
2
P4
o
o
o
o
o
o
o
o
o

0 0 0 0 0 0 0 O

14131249117 0 0 0 0 0 0 0 0 ©

0 0 0 0 0 0 0 0 0 3 111244169 19 O

0 0 0 0 0 0 0 0O O O O 5924123572 14222066 0 0 0 0 0 0 0 0 0 o
0 0 0 0 0 0 0 0 O O O O 252182542313 0 0 0 0 0 0 0 0 0 0 0o
0 0 0 0 0 0 0 0 0 0 O O 0 13325322133 0 0 0 0 0 o0 0 0 0 0 0

© 0 0 0 00 0 0 0 0 00O

1923711196217 19 0 0 0 0 0 0 0 ©0 0 o

0 0 0 0 0 0 0 0 O O O O 174138 0 2319320418 0 0 0 ©0 0 0 0 0 0O
0 0 0 0 0 0 0 0O O O O 96224 0 0 0 25218169 3 0 0 ©0 0 ©0 0 0 0o
0 0 0 0 0 0 0 0O O O 0215138 0 0 0 0 8625399 0 0 0 0 0 0 0 0o

0O 0 0 0 0 0 0 0 O O 02597 0 0 O 0 3 16224 n

28 x 28
784 pixels

¢ 0 0 0 0 0 0O

0 0 0 0 0 0 0 0O 0O O 021597 0 0 0 0O 0 Me253 68 0 0 0 0 0 0 0
0 0 0 0 0 0O 0 O O O O 1W51570 0 0 0 0 4025498 0 0 0 0 0 0 0o

0 0 0 0 0 0 0 0 0 O O SO24m

0 0 0 0 1M22445 0 0 0 0 0 0 0O

0 0 0 0 0 0 O O O O O O 17425114259 83167244111 0 ©0 ©0 0 0 0 0 0

0 0 0 0 0 0 0 0O 0O O O O 6 133253253253169 &

3 00 00 0 O0O0UWDO

© 00 0 00O OO OO O O OO O O 0 0 0 OCOOU OO O DO OO

© 0 0 0 0 0O OO O O O 0O OO O OCOOU OO DOU OU OU OU OU OU DOUDOOWO

© 0 0 0 00O OO O 0O 0 0 00O OO 0 0 0 0 0 O O0OOUDOOU OUOOWD

One digit in
each row.
Each row
represents
one image

28 x 28 Pixels = 784 Features

Label

<: o

5 Not5 =——» 0
Numerical
Labels

Handwritten Digits Classifier - Training Process

label = 5§ label = 1 tabel = 9

IIIII

!!!!!!!

Model

Algorithm

Input data in tabular form -

Includes both features and
labels

New Images Model’s Prediction

Not 5

—> 5

5-detector

Handwritten Digits Classifier - Training Process - Steps

Divide dataset
into training
and test

samples

Train the classifier
using training

dataset

Test using test

dataset

Performance
metrics (Finalize

the model)

Improve the
model using error

analysis

TRAINING AND TEST DATASET

e We split the data into
o Training set - Contains 60,000 out of 70,000 samples
o Test set - Contains 10,000 out of 70,000 samples

e We train the model on training set and evaluate the performance of the
model on test set

Training Dataset (60000
images) — shuffling is

Entire important

dataset

(70000

images) Test Dataset

(10000 images)

X_train, X_test, y train, y test = X[:60000], X[60000:], y[:60000], y[60000:]

Handwritten Digits Classifier - Training Process - Steps

Divide dataset
into training and

test samples

Train the model

using training

dataset

Test using test

dataset

Performance
metrics (Finalize

the model)

TRAINING A BINARY CLASSIFIER

e What is a Binary Classification?
O Binary or binomial classification 1s the task of classifying the
elements of a given set into two groups (predicting which group each
one belongs to) on the basis of a classification rule.

Lets try to 1dentify one digit example, the number 5. This “S-detector” will
be an example of a binary classifier.

5
Example: 5 <:
Not 5
Input:
Image Output:
Classification

Let’s create the target vectors for this classification task:

y train 5 = (y_train == 5) # True for all 5s, False for all other digits
y test 5 = (y_test == 5)

STOCHASTIC GRADIENT DESCENT (SGD) CLASSIFIER

Classifier used: Stochastic Gradient Descent (SGD) Classifier
using Scikit-Learn’s SGDClassifier class.

Training a Binary Classifier using SGD

e Stochastic Gradient Descent (SGD) Classifier
o (Capable of handling large datasets
o Deals with training instances independently

o Well suited for online training

Let’s create an SGDClassifier and train it on the whole training set:

from sklearn.linear_model import SGDClassifier

sgd clf = SGDClassifier(random_state=42)
sgd clf.fit(X _train, y train_5)

SGD - Stochastic Gradient Descent Classifier

For the two-dimensional (2 features) training dataset,
m Trying to estimate the coefficients of the line which can be
m Best-fitted dividing the two categories

Steps

Divide dataset Train the classifier Performance
| o ‘ - Test using sample | o
into training and using training metrics (Finalize

data
test samples dataset the model)

TESTING SGD CLASSIFIER IN SCIKIT LEARN

>>> some digit = X[O] # Taking the 11th image
>>>

sgd clf.predict([some digit])

array([True])

The classifier guesses that this image represents a 5 (True).

PERFORMANCE MEASURE - M ETHODS

Steps

Divide dataset Train the classifier Performance

Test using sample

into training and using training metrics (Finalize

data

test samples dataset the model)

Confusion
Cross Precision Recall F1 Score

Validation - Matrix

Accuracy

ROC Curve

PERFORMANCE MEASURE - CROSS VALIDATION

What is cross-validation?

e [t involves splitting the training set into K distinct subsets called folds,
then training and evaluating the model K times, picking a different fold
for evaluation every time and training on the other K-1 folds.

e The result 1s an array containing K evaluation scores.

cross_val score
cross val score() function 1n scikit-learn can be used to perform cross
validation.

Performance measure - Cross

Validation

1" iteration

2™ iteration

3 iteration

10™ iteration -

Training set

Training folds
|

ol

'[\,:]3

—
-

Here k = 10

PERFORMING CROSS VALIDATION IN SCIKIT LEARN

>>> from sklearn.model selection import
cross _val score

>>> cross_val_score(sid_clf, X_tri;n, y_trai} 5, \\\
cv=3, lscor‘ing="accur* cy")

Scoring parameter Classifier object Training data Labels No.of folds

(Here, scoring parameter is accuracy)

Performance Measures - Cross Validation

>>> array([0.95035, 0.96035, 0.9604])

- The resulting accuracy is above 95 % for each of the folds

s the accuracy of 95% good enough?

Let's see

Performance Measures - Cross Validation

For Now Let’s Build Another Classifier - Never5Classifier - Which
classifies every image as “Not 5"

Never5Classifier

> Not 5
¢ — g = =

5 Not 5

Skewed Dataset

Our

Dataset %

10%
Images -
of Digit 5

Skewed Dataset

Class Imbalance

ACCURACY

Input Images Model’s Prediction

4' 5-detector Not 5 \/
3 — g = s X

Accuracy =% * 100 Not5 K
= 33.33%

No.Samples Predicted Correctly

‘lfc

Accuracy =

Total No.of Samples

Accuracy is generally not the preferred performance measure for classifiers, especially when you are dealing
with skewed datasets (when some classes are much more frequent than others).

DUMB CLASSIFIER

1 Dumb classifier that just classifies every single image 1n the “not-5”
class.
Training Set Model’s Prediction

v Dumb Not 5 ~/

Classifier

‘g. :> g:‘f“ > Not 5 \/
Z Not 5 \/
_ Not 5 K,

Model’s
Prediction

Input

from sklearn.base import BaseEstimator

class Never5Classifier(BaseEstimator):
def fit(self, X, y=None):
Pass
def predict(self, X):
return np.zeros((len(X), 1), dtype=bool)

>> never 5 clf = NeverSClassifier()
>»> ross_val score(never 5 clf, X train, y train 5, cv=3, scoring="accuracy")
array([0.91125, 0.90855, 0.90915])

PERFORMING CROSS VALIDATION IN SCIKIT
LEARN

Accuracy = 95 % Accuracy = 90 %

Dumb Classifier -
SGDClassifier Never5 Classifier

SKEWED DATASET

Our

Dataset %

Skewed
Dataset

Class
Imbalance

Input

MobDEL’s
PREDICTION

Not 5 J

y

Dumb Classifier - Not 5 X
Classifies every image

as “Not 5”

Accuracy — 90%

LLEARNINGS??

e Accuracy may not be a good performance measure when dealing
with skewed datasets

Jeps

Divide dataset

into training and

test samples

Cross
Validation -

Accuracy

Train the classifier Performance

Test using sample

using training metrics (Finalize

dataset

Confusion

Matrix

data - some_digit
the model)

PERFORMANCE MEASURES - CONFUSION MATRIX

e What is confusion matrix?
o The general 1dea 1s to count the number of times instances of class A

are classified as class B.

o Can be better than simple accuracy.

o For example: to know the number of times the classifier confused
images of 5s with 3s

Predicted Predicted

0 1 TN = True Negative
TP = True Positive
FN = False Negative
FP = False Positive

Actual

0

Actual

1

Outline of a confusion matrix for 2-way classification

Actual

Predicted

—

Not-5s 5s
F 3 7
Not-5s :.) 6
55 S
5~ 555

Sample Confusion Matrix of 5-Detector

Actu —<
al

Predict

ed‘A

(Actual Image)

:

4

Not 5

N \ 3 |
s | & 7
3 2
: 0O r
TN - True

Negatives

(Predicte‘

Class)

Actu <<
al

Predict

edA

|

'\ b

Not-5s SS]V
ose & %7

: 4 ¢
° O r \p) S 5

(Actual Image)

'

4

5

FP - False Positives

(Predicte‘

Class)

Actu <<
al

Predicted

|

(Actual Image)

¥

£

N

Not 5

Not-5s 5s
Not-5s & % ?
3 2
5 6 9./
F
N FN - False

Negatives

K

(Predicted

Class) ‘

Actu <<
al

Predicted

Not-5s

5s

Not-5s

5s

TP - True
Positives

v -

(Actual Image)

/

\/
A

(Predicted Class

)

Predicted

Actual +

Ss S r 5’-355§>

©

In-order to compute the confusion matrix we would
consider set of predictions so that they can be compared
to the actual targets.

Keep test set aside and apply cross val predict()
function on train set.

from ¢« : » selection import cross_val predict

y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)

cross val predict() performs K-fold cross-validation, and
returns the predictions made on each fold.

Confusion matrix 1s printed using confusion matrix()
function. To this we pass the target classes (y train 5) and
the predicted classes (y train pred):

>>> from n import confusion_matrix
>>> confusion _matrix(y_train_5, y train_pred)
array([[53057, 1522],

[1325, 409%]])

CoNFUSION MATRIX - EXAMPLE

For ‘5’ and ‘Not 5’ classifier

e Each row 1n a confusion matrix represents an actual class, while each
column represents a predicted class.

e The first row of this matrix considers non-5 1images (the negative class):
o 53,272 of them were correctly classified as non-5s (they are called

true negatives)

o The remaining 1,307 were wrongly classified as 5s (false positives).

True Negative (TN)

False Positive (FP)

\ [\ /
\\\ krediction \ /

Not 5
Actual

False Negative (FN)

Total

Not 5 5

54349 5651

ziﬁiﬁﬁﬁji/

///JConfusion
Matrix
]

54579

5421

True Positive (TP)

60000

For ‘5’ and ‘Not 5’ classifier

e 'The second row considers the images of 5s (the positive class):
o 1,077 were wrongly classified as non-5s (false negatives)

o The remaining 4,344 were correctly classified as 5s (true positives).

True Negative (TN) False P

\ [

psitive

(FP)

R

Confusion

Actual

NG

Not 5 53272

False Neg:

ative (FN)

—]

1077

1307

4344

Matrix

]

True Positive (TP)

A perfect classifier would have only true positives and
true negatives, so its confusion matrix would have
nonzero values only on its main diagonal (top left to
bottom right):

>>> y _train_perfect_predictions = y_train_S5 # pretend we reached perfection
>>> confusion_matrix(y_train_5, y_train_perfect_predictions)
array([[54579, 0],

[0, 5421]])

The confusion matrix gives a lot of information, but
sometimes we may prefer a more concise metric. An
interesting one to look at i1s the accuracy of the
positive predictions; this 1s called the precision of the
classifier

Steps

Divide dataset
into training and

test samples

Cross
Validation -

Accuracy

Train the classifier Performance Improve the

Test using sample

using training metrics (Finalize model using error

dataset

Confusion

Matrix

data - some_digit

the model) analysis

Performance Measures - Precision

Precision means lack of mistakes TP
SN P PP
Predicted o
Precision -
/-\ f_A_‘ 3 out of 4
TN

Not-5s 5s

N
1

Not-5s :.) 6

5s S s 9
M 5 M Precision

FN TP

Actual

what proportion of images that were classified as 5s were actually 5 ‘

Performance Measures - Recall

Recall means remember something learnt in past

Predicted

(w) @

< Not-5s 5s
i\\ 4
E A
Not-5s) 6

ss S r 555X

FN

Actual

Recall

-

what proportion of images that were actually 5 were predicted as class 5 ___

¥ b

recall = o FN Recall - 3 out of 5

Performance measures - Precision and
recall

‘5’ and ‘Not 5’ classifier
Predicted

Negative Positive

Negative
A
Actual o
Precision
(e.g., 3 out of 4)
Positive

Recall
(e.g., 3out of §)

» o TP
Precision = TP + FP

Recall, also called sensitivity or the true positive rate (TPR):

P
IP+ FN

OTrue - Positive means the classifier correctly classified the Positive class.

recall =

[l True - Negative means the classifier correctly classified the Negative
class.

[False - Positive means the classifier incorrectly classified a Negative
class as Positive Class.

[False - Negative means the classifier incorrectly classified a Positive class
as Negative Class.

Precision and recall in scikit-learn

>>> from sklearn.metrics import precision_score,
recall score

>>> precision score(y train 5,
y train_pred)

©.76871350203503808

>>> recall score(y _train 5, y train_pred)
©.79136690647482011

Performance Measures - Confusion Matrix

Precision = 83 % Recall = 65 %
Correct only Detects only
83% of time 65% of 5s

Precision / Recall Score of 5-detector

LET’S SEE ONE MORE EXAMPLE OF CONFUSION MATRIX OF

MODEL PREDICTING IF SOMEONE HAS CANCER OR
NOT

PERFORMANCE MEASURES - CONFUSION

MATRIX
PREDICTED
TN { \ FP
N

< Cancer - No | Cancer - Y(%

| 4
Actua < Cancer - No Al 50 1
| 0

Cancer - Yes 5 100

FN TP

PERFORMANCE MEASURES - CONFUSION

MATRIX
PREDICTED
J—
Cancer - No Cancer -
Actua ves
| — Cancer - No 50 10
| Cancer - 5 100
Yes
Total

Predictions
= 110

PERFORMANCE MEASURES - CONFUSION

MATRIX

Actual

—~

PREDICTED

|

|

|

Cancer - No Cancer -
Yes
Cancer - No 50 10
Cancer - 5 100
Yes
Correct
Predictions
= 100

Precision -
100 out of
110
= 0.91

PERFORMANCE MEASURES - CONFUSION

MATRIX
PREDICTED
-
Cancer - No Cancer -
Yes
Actua —
| Cancer - No 50 10
Total Patients
| Cancer - 5 100 Having Cancer
Yes =105

Model's Predictions
as Having Cancer =

Recall - 100 out of 105 '

=0.95 ‘

Steps

Divide dataset
into training and

test samples

Cross
Validation -

AcCcuracy

Train the classifier Performance
Test using sample

using training metrics (Finalize
data - some_digit

dataset

Confusion

Matrix

the model)

Performance Measures - F1 Score

e Instead of computing precision and recall every time
e \We prefer a single metric which combines both precision and recall

e This single metricis f1score

e F1scoreis harmonic mean of precision and recall

precision X recall _ 4

precision + recall — 7p 4 IN -{FF

iy = 2_|_ — =2X

precision recall

Performance Measures - F1 Score

Precision Recall

F1 score

F1 score is high when both Precision and Recall
are almost similar

Performance Measures - F1 Score F1Score

Recall = 01

Precision = 0.9

Recall is really small compared to Precision

F1 score will be closer to the smaller number than the bigger one

Performance Measures - F1 Score

e F1score favors models that have similar precision and recall
e But depending on the problem which we are solving

o We may go for higher precision or higher recall

Precision Recall

F1 score

e ‘5 and ‘Not 5’ classifier

Prediction
Not 5 5 Total Recall
Not 5 54579
Actual

5 5421 = 4344 / 5421
Total 54349 5651 60000

Precision = 4344/5651 F1 score = 0.78468

= 76.87 %

Fl score = harmonic mean of precision and
recall

F. = 2 _ precision X recall _
o P precision + recall ~ 7p 4 INLIP

recall 2 ‘

precision

e Fl score using scikit-learn

>>> from sklearn.metrics import
1 score
>>> f1 score(y_train 5, y train pred)

Say we have to build a model which detects if a video is safe for
Kids or not.

Question - High Precision or High
Recall?

PERFORMANCE MEASURES- F1 SCORE

High precision means if the model classifies video 4 and video 6 as safe for kids,
they are actually safe for kids.
In high precision, we are okay if the model is not able to classify video 2 as safe for

kids but whichever videos it classifies as safe for kids they are actually safe.
/)

High Precision

PERFORMANCE MEASURES- F1 SCORE

High recall means the model will try to maximize the number of videos that are
classified as safe.

5 - Not Safe

High
Recall

PERFORMANCE MEASURES- F1
SCORE

In high recall model may mistake while classifying video as safe. This is because recall
iIs more about classifying all the “safe for kids” videos as “safe” rather than classifying
all the videos correctly.

5 - Not Safe
High Recall

PERFORMANCE MEASURES- F1 SCORE

High Precision or High Recall?

PERFORMANCE MEASURES- F1 SCORE

We would prefer a model which has high precision and low recall. It is okay if the
model rejects many good videos but keeps only really safe ones

High Precision, Low
Recall

5 - Not Safe 6 - Safe

Say we have to build a model which detects shoplifters on the basis of
surveillance image. In case, someone is marked as shoplifter, we
manually examine.

Question - High Precision or High
Recall?

Performance Measures - F1 Score

We would prefer the model to have high recall even if the precision is low because
our goal is to catch almost all the shoplifters.

In the high recall, the security guard might catch and examine some non shoplifters
also but we will achieve our goal of catching almost all the shoplifters.

High Recall

PERFORMANCE MEASURES- F1 SCORE

Now you may think that we can have both high precision and high recall in a good model.
But unfortunately, we can’t have both high precision and high recall at the same time.

Precision Recall

PERFORMANCE MEASURES- F1
SCORE

Increasing the precision reduces recall and

Precision

Recall

PERFORMANCE MEASURES- F1 SCORE

Vice versa

Precision

Recall

PERFORMANCE MEASURES - PRECISION VS RECALL

e Different use cases may require different precision and recall

Performance measure Detect videos that Detect shoplifters
(down) are unsafe for kids in surveillance
images
Precision High Low
Recall Low High
FP should be low, FP can be high,
FN can be high FN should be low

Increasing precision reduces recall, and vice versa. This 1s called
the precision/recall tradeoft.

Performance Measures- Precision / Recall
Tradeoff

To understand this tradeoff, lets see
how SGDClassifier works

PERFORMANCE MEASURES - PRECISION / RECALL
TRADEOFF

Decision
Score

Score >
Threshold

B

“5” - Positive
Class

Training Classifier
Set

No

\/
“Not 5” - Negative Class

Decision Threshold - decided by the
classification algorithm

PRECISION / RECALL TRADEOFF - THRESHOLDS

Precision: 6/8 =75%
Recall: 6/6 = 100%

FF252 566|555

Negative predictions
< | g | >
N Various thresholds v

Score

e SGD Classifier makes 1ts classification decision, for instance it computes
a score based on the decision function
o Score above a certain threshold is classified as positive class
o Score below a certain threshold 1s classified as negative class

e Thresholds can be set to achieve certain precision and recall.

Let us observe the above example : shows a few digits positioned from the
lowest score on the left to the highest score on the right.

PRECISION / RECALL TRADEOFF

Precision: 6/8=75%
Recall: 6/6 = 100%

&:-zylsa | 6|$55

Negative predictions A ..-~7 Positive predictions

< | S | 4

Various thresholds

Score

TN-TN-TN-TN-TP-FP-TP-TP-FP-TP-TP-TP

TN=6,TP=6,FN=0,FP =2

Precision = 6/ (6+2) =
/5% Recall =6/(6+0) =

TP 100% TP ‘
Precision = x5 pp recall = 5 TN

Precision: 6/8=75% 4/5 = 80%
Recall: 6/6 = 100% 4/6 = 67%

&:-zylsa | 6|$55

Negative predictions A ..-~7 Positive predictions

< | S | 4

Various thresholds

Score

TN-TN-TN-TN-FN-TN-FN-TP-FP-TP-TP-TP
TN=5TP=4,FN=2,FP =1

Precision = 4/ (4+1) = 80%
Recall =4/ (4+2) = 67%

TP _ I'P ‘
precision = TP + FP recall = TP + FN

PrECISION / RECALL TRADEOFF

Precision: 6/8 =75% 4/5=80% 2
Recall: 6/6 = 100% 4/6 = 67%
| | | # Score
Negative predictions A ..-+7 Positive predictions

< | e |)

Various thresholds

TN-TN-TN-TN-FN-TN-FN-FN-TN-TP-TP-TP
TN=6,TP=3,FN=2, FP =0

Precision = 3/ (3+0) =
100% Recall = 3/(3+3) =

50%
TP _ I'P ‘
precision = TP + FP recall = TP + FN

Scikit-Learn does not allow to set the threshold directly, but 1t does
provide access to the decision scores to make predictions.

Decision function() method returns a score for each instance.

Then use any threshold for which we want to make predictions based

on those scores:

>>> y_scores = sgd_clf.decision_function([some_digit])
>>> y scores

array([2412.53175101])

>>> threshold = 0

>>> y some_digit_pred = (y_scores > threshold)

array([True])

The SGDClassifier uses a threshold equal to 0 and returns True.
Let’s raise the threshold:

>>> threshold = 8000

>>> y some_digit_pred = (y_scores > threshold)
>>> y some_digit pred

array([False])

This confirms that raising the threshold decreases recall. The image
actually represents a 5, and the classifier detects it when the
threshold 1s 0, but it misses 1t when the threshold 1s increased to

3,000.

How to decide the best threshold?

e Get the scores of all the training dataset using cross val predict with
decision function as function

y_scores = cross_val_predict(sgd clf, X _train, y_train_5, cv=3,
method="decision_function")

e (Compute the precision and recall for all possible thresholds using
precision recall curve()

from sklearn.metrics import precision_recall_curve

precisions, recalls, thresholds = precision_recall _curve(y_train_5, y scores)

e Plot both precision and recall for the thresholds using matplotlib.

def plot_precision_recall _vs_threshold(precisions, recalls, thresholds):
plt.plot(thresholds, precisions[:-1], "b--", label="Precision")
plt.plot(thresholds, recalls[:-1], "g-", label="Recall")
[...] # highlight the threshold and add the legend, axis label, and grid

plot_precision_recall_vs_threshold(precisions, recalls, thresholds)
plt.show()

e Sclect the threshold value that gives the best precision/ recall tradeoff.

e Plotting precision/ recall curve using Scikit-Learn

>>> def plot precision recall vs threshold(precisions,
recalls, thresholds):
plt.figure(figsize=(18,7))
plt.plot(thresholds, precisions[:-1], "b--",
label="Precision") plt.plot(thresholds, recalls[:-1], "g-",
label="Recall") plt.xlabel("Threshold")
plt.legend(loc="upper
left") plt.ylim([0, 1])

>>> plot precision recall vs threshold(precisions,
recalls, thresholds)

¢ > Predisioi ihcreases while recall decreases with increase in
threshold
e Scikit enables the user to get the scores from the classifier

Precision / Recall Tradeoff

Q. How to decide the best threshold? What is the best threshold for below?

1.0 —

0.8}
Precision

0.6} =T

- = Precision
o s Recall
0.2} -~
0.0 ' ' ' ' ' ' '

—-600000 —400000 —200000 0 200000 400000 600000

‘ Threshold >

PrEcISION / RECALL

CURVE

1.0 p——

0.8}

0.6 w
- = Precision
— Recall

0.4}

0.2+ gm®

00]]]]] | |
-600000 -400000 -200000 0 200000 400000 600000

Threshold s

Precision and recall versus the
decision threshold

Recall

PrEcISION / RECALL

CURVE

Precision

1.0 p——

0.8}
0.6} "
- = Precision
— Recall
il eca
0.2} -
00 | | | | | | |
-600000 —400000 —200000 0 200000 400000 600000
7 Threshold

Precision and recall versus the
decision threshold

PrEcISION / RECALL

CURVE
1.0=—
0.8}
0.6} ..
- = Precision
Recall s Recall
0.2} -
00 | | | | | | |
-600000 -400000 —200000 0 200000 400000 600000
7 Threshold

Precision and recall versus the
decision threshold

PrEcISION / RECALL

CURVE

1.0 p——

0.8

0.6

0.4+

0.2+

0.0

- = Precision
— Recall

-
-
-

m ==

~600000 —400000 —200000 0 200000 400000 600000
Threshold

Which threshold value to
use?

PrEecisioN / REcaLL CURVE

/:.

90% Precision

1.0

0.6 =
- = Precision

— Recall ’
- eca K
’/
’
-
-
0.2} P
0.0 L L 1 ! ! K
-600000 —400000 —200000 0 200000 400000 600000

Threshold

Select the threshold toachieve 90% precision

Set threshold
to 400000

BUILDING MODEL WITH DESIRED PRECISION

e So let's say you want to build a classifier with 90% precision

o Then first select the threshold value which gives you 90%
precision

o Then build classifier using this threshold

>>> threshold 90 precision = thresholds[np.argmax(precisions >= 0.90)]
>>>y train_pred_90 = (y_scores >= threshold_90_precision)

This classifier will give
90% precision

BUILDING MODEL WITH DESIRED PRECISION

o Verify it

>>> precision_score(y_train_5, y train_pred 90)
0.9000380083618396

>>> recall_score(y_train_5, y train_pred_90)
0.4368197749492714

| want a model
with 99%
precision

At what
recall? :)

Boss ML
Engineer

REVEW OF PRECISION/ RECALL TRADEOFF

® The user can subsequently set the threshold and obtain the
classification by a simple comparison.

>>> threshold = 200000

>>> y some digit pred = > threshold)
(y_scores
>>> y _some_digit pred

o PBleRay,(Hy 8di&&ihg an appropriate threshold, the user can obtain the
dé&siparppedision. However, the best precision may not have the
best recall.

Another way to select a good precision/recall trade-off 1s
to plot precision directly against recall, as shown 1n
figure.

Precision

0.0 - — . .
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure 3-5. Precision versus recall

We see that precision really starts to fall sharply around
80% recall.

We probably want to select a precision/recall trade-off just
before that drop—for example, at around 60% recall. But
of course, the choice depends on your project.

Suppose you decide to aim for 90% precision.

We look the first plot and search for the lowest threshold
that gives you at least 90% precision.

(np.argmax() will give you the first index of the maximum
value, which 1n this case means the first True value):

threshold_90_precision = thresholds[np.argmax(precisions >= 0.90)] # ~7816

To make predictions (on the training set for now), instead
of calling the classifier’s predict() method, you can run
this code:

y train_pred 90 = (y_scores >= threshold 90 precision)

Let’s check these predictions’ precision and recall:

>>> precision_score(y train_ 5, y train_pred 90)
0.9000380083618396

>>> recall_score(y_train_5, y_train_pred_90)
0.4368197749492714

Steps

Divide dataset

into training and

test samples

Cross

Validation -

Accuracy

Train the classifier Performance

Test using sample

using training metrics (Finalize

dataset

Confusion

Matrix

data - some_digit
the model)

PR W [

THE ROC CURVE

The recerver operating characteristic (ROC) curve 1s
another common tool used with binary classifiers.

the ROC curve plots the true positive rate (another name
for recall) against the false positive rate (FPR).

e ROC Curve Similar to F1 score but uses a different metric
e Uses True Positive Rate (TPR) = Recall = TP / (TP + FN)
e False Positive Rate (FPR) =FP / (FP + TN)
=] - True Negative Rate (TNR)
e [FPR i1s the ratio of negative instances that are incorrectly classified
as positive.
e True Negative Rate (TNR) =TN / (FP + TN)
e The TNR 1s also called specificity.
e Receiver Operating Characteristics (ROC) plots: TPR versus FPR

PERFORMANCE MEASURES - ROC CURVE

* ROC curve plots recall versus 1-specificity.
To plot the ROC curve, you first use the roc curve() function
to compute the TPR and FPR for various threshold values:

from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc_curve(y_train_5, y scores)

Then you can plot the FPR against the TPR using Matplotlib.

def plot _roc_curve(fpr, tpr, label=None):
plt.plot(fpr, tpr, linewidth=2, label=1label)
plt.plot([0, 1], [0, 1], 'k--"') # Dashed diagonal
[...] # Add axis labels and grid

plot_roc_curve(fpr, tpr)
plt.show()

PERFORMANCE MEASURES - ROC CuURVE

True Positive Rate

1.0

0.8}

o
o

o
>

0.2}

0.2

0.4 0.6 0.8
False Positive Rate
Figure 3-6. ROC curve

1.0

Dotted line = purely
random classifier

Bad Classifier Yy g Random Classifer. 50 %
ry y “5" 50% “Not 5"

PERFORMANCE MEASURES - ROC CUuURrVE

e Higher the recall (TPR True Positive Rate), higher 1s the FPR

(False Positive Rate)

e Dotted line = purely random classifier

e Good classifier stays away from the dotted line towards top-left corner
e A perfect classifier shall have a ROC Area Under the Curve (AUC) equal

to 1 whereas a purely random classifier shall have ROC AUC = 0.5.

Scikit-Learn provides a function to compute the ROC AUC:
>>> from sklearn.metrics import roc_auc score

>>>r10Cc_auc_score(y train_ 5,y scores)
0.9611778893101814

REVIEW OF THE ML PROCESS - BINARY CLASSIFIER

e Divide the dataset into training and test samples
e Train the binary classifier

e (hoose the appropriate metric for the task (recall, precision, F1,
ROC)

e Sclect the precision/ recall tradeoff that fits the needs

e Compare various models using ROC curves and ROC AUC curves

MULTICLASS CLASSIFICATION(MULTINOMIAL

CLASSIFICATION)
Binary classification: Multi-class classification:
T A
X NS 3
X >
Z 74 x = A& w X
2 O 2 ANy
>
OOO ~ o
O
> I >
X X1

e Binary classifiers distinguish between two classes

e Algorithm such as Logistic Regression or Support Vector Machine
classifiers are strictly binary classifiers.

e While multi-class classifiers (also called multinomial classifiers) can
distinguish between more than two classes.

e Algorithm such as SGD classifiers, Random Forest classifiers, and naive

Bayes classifiers can handle multiple classes.

Multiclass classification

Email foldering/tagging: Work, Friends, Family, Hogby
” A
St ;' Yyal y+3 4 s

Medical diagrams: Not ill, Cold, Flu
5‘! 2 3

MuLTICLASS CLASSIFICATION

The various strategies that we can use to perform multiclass
classification with multiple binary classifiers.

. One-versus-all (OvA) strategy also called
one-versus-the-rest(OvR) -
for example,
a. For eg. to classify the digit images into 10 classes (from O to
9) one way 1s to train 10 binary classifiers, one for each digit
(a O-detector, a 1-detector, a 2-detector, and so on).
b. Then when you want to classify an i1mage, you get the
decision score from each classifier for that image and you
select the class whose classifier outputs the highest score.

MuLTICLASS CLASSIFICATION

0 1 2 3 4 1 vs All classifier
0 1 2 3 4 2 vs All classifier
0 1 2 3 4 3 vs All classifier
0 1 2 3 4 4 vs All classifier
0 1 2 3 4 5 vs All classifier

MuLTICLASS CLASSIFICATION

2. One-versus-one (OvO) strategy
a. This 1s another strategy in which we train a binary classifier

for every pair of digits: one to distinguish Os and 1s, another
to distinguish Os and 2s, another for 1s and 2s, and so on.

b, If there are N classes, youneed to tram N x (N—1) /2
classifiers.

1 vs 3l classifier

1 vs 3 classifier

1 vs 4 classifier

1 vs 5 classifier

4 vs 5 classifi

| | | | | |

ERROR ANALYSIS

e Once the model (classifier) 1s 1dentified, it can be improved by analyzing
the types of errors it makes

e For the previous multiclass classification example of classifying images of
digits into digit labels, it can be done by observing the confusion matrix and
plotting 1t on the graph

>>> y train_pred = cross val predict(sgd clf, X train_scaled, y train, cv=3)
>>> conf_mx = confusion_matrix(y_train, y_train_pred)

>>> conf_mx

array([[5578, 0, 22, 7, 8, 45, 35, 5, 222, 1],

[o, 6410, 35, 26, 4, 44, 4, 8, 198, 13],
[28, 27, 5232, 100, 74, 27, 68, 37, 354, 11],
[23, 18, 115, 5254, 2, 209, 26, 38, 373, 73],
[11, 14, 45, 12, 5219, 11, 33, 26, 299, 172],
[26, 16, 31, 173, 54, 4484, 76, 14, 482, 65],
[31, 17, 45, 2, 42, 98, 5556, 3, 123, 1],
[20, 10, 53, 27, 50, 13, 3, 5696, 173, 220],
[17, 64, 47, 91, 3, 125, 24, 11, 5421, 48],
[24, 18, 29, 67, 116, 39, 1, 174, 329, 5152]])

ERROR ANALYSIS

e [ooks fairly good since most

images are on the diagonal

e 5slooks darker than other digits
- Q. What are the possible
reasons?

O
O

Fewer 5s in the dataset
Classifier does not perform

well on 5s
Both (Ans)

ERROR ANALYSIS

e We remove the possibility of fewer 5s in the dataset by normalizing it by
the number of samples in each dataset

>>> row_sums = conf mx.sum(axis=1, keepdims=True)

>>> norm_conf _mx = conf_mx / row_sums

>>> np.fill diagonal(norm _conf mx, 0)

>>> plt.matshow(norm conf mx, cmap=plt.cm.gray)

>>> plt.show() g 2 3 B B

0

Observations:
1. 8 and 9 columns are bright:

1. many digits misclassified as 8 and 9

2. many 8 and 9 misclassified as other digits
3. (3,5) and (5,3) are abnormally bright: confusion between 3

and 5

Possible solutions:
1. Gather more training data for

8s and 9s
2. Pre-process images to make

certain features stand out more

3. Analyzing individual errors

Analyzing individual errors (plotting 3s and 5s)

Actual 3 733338 35353
cu.a : 23333 3 2, % 3 3 Actual 3,
Predicted 3 333 B3B3 3 Predicted 5
3.8 2383 RO S
B]3323F 335535
Y>> 800 L1 5&5%5
S35 95 5855 75
J 95535 55855
Actual 3, 555%S 555 5¢ Actual 3,
Predicted 3 S5 5SS 5585 5 Predicted5

Some written badly, most are errors. What can we do about the

errors?

Observation:

e Some digits are written badly while most are errors in

classification (between 3s and 5s).

e SGDClassifier assigns a weight per class to each pixel
and calculate the total score for a particular class
e Since 3s and 3s differ by a few pixels, the classifier 1s easily

confused - Main diffeg
straight line ﬁ

Possible Solution
e (lassifier 1s quite sensitive to 1image shifting and rotation

ce between 3 @d 5 1s the position of the

e Solution: Preprocess the image to ensure that they are well-centered

and not rotated

