
UNIT -2
CLASSIFICATION

❖ Introduction
❖ Build Model with MNIST Dataset
❖ Training a Binary Classifier
❖ Performance Measures
❖ Cross Validation
❖ Confusion Matrix
❖ Precision & Recall
❖ Precision/Recall Trade-off
❖ ROC Curve

❖ Types of Classification –
❖ Multiclass Classification

❖ Error Analysis

WHAT IS CLASSIFICATION ?
Classification is the type of supervised learning

● Identify the class to which a new observation belongs to.

WHAT IS CLASSIFICATION ?
Classification is the type of supervised learning

● Identify the class to which a new observation belongs to.

Examples of Classification

● Classifying emails as spam or not spam
● Classifying flowers of a particular species like the Iris Dataset
● Classifying a credit card transaction as fraudulent or not
● Face recognition

There are 2 types of Classification:
• Binary or binomial
• Multi-Class

Apple Banana Apple Kiwi Grapes

Split images into training and test
set

Appl
e

Banan
a

Kiwi Apple
Grape
s

Training Set - 80%
Data

Test Set - 20%
Data

LABELED
IMAGES FOR
BUILDING
MODEL

Using training set
we build the
model

Apple Banana Apple Kiwi Grapes

Split images into training and test
set

Apple Banana AppleKiwiGrapes

Training Set - 80%
Data

Test Set - 20%
Data

LABELED
IMAGES FOR
BUILDING
MODEL

Using test set we
evaluate
performance of model

Fruits
Classifier

Apple

Banana

Images without
Label

Model’s
PredictionsModel

PREDICTIONS

There are 2 types of Classification:
• Binary or binomial
• Multi-Class

Goal - Classification

The goal of this session is to classify
handwritten digits

BINARY AND MULTICLASS CLASSIFICATION

5

Not 5

Binary Classification Multiclass Classification

Classification is done between
2 classes

Classification is done between
multiple classes

● In this problem, we will use MNIST
dataset

○ Set of 70,000 small images

○ Each image is grayscale (black
& white)

○ 28 by 28 pixels

HANDWRITTEN DIGITS CLASSIFIER - DATASET

MNIST Dataset (Modified National
Institute of Standards and Technology)

HANDWRITTEN DIGITS CLASSIFIER - DATASET

Every Image has Label
Associated

● MNIST dataset is also called

○ “Hello World” of Machine
Learning

● We have to build a model

using this labelled dataset

� Datasets loaded generally have a similar dictionary
structure:
⚫ A DESCR key describing the dataset
⚫ A data key containing an array with one row per instance and one

column per feature
⚫ A target key containing an array with the labels

DATASET

DATASET

● Each image
○ 28 X 28 pixels
○ 784 features

● There are 70000 such images making the dataset dimension
○ 70000 X 784

○ Each feature represents one pixel’s intensity, from 0 to 255.

Let’s look at these arrays:

Divide dataset

into training

and test

samples

Train the classifier

using training

dataset

Test using test

dataset

Performance

metrics (Finalize

the model)

Improve the

model using error

analysis

TRAINING AND TEST DATASET

● We split the data into
○ Training set - Contains 60,000 out of 70,000 samples
○ Test set - Contains 10,000 out of 70,000 samples

● We train the model on training set and evaluate the performance of the
model on test set

Entire
dataset
(70000
images)

Training Dataset (60000
images) – shuffling is
important

Test Dataset
(10000 images)

TRAINING A BINARY CLASSIFIER

● What is a Binary Classification?
○ Binary or binomial classification is the task of classifying the

elements of a given set into two groups (predicting which group each
one belongs to) on the basis of a classification rule.

Lets try to identify one digit example, the number 5. This “5-detector” will
be an example of a binary classifier.

5
Example:

Input:
Image

Not 5

Output:
Classification

Let’s create the target vectors for this classification task:

STOCHASTIC GRADIENT DESCENT (SGD) CLASSIFIER

Classifier used: Stochastic Gradient Descent (SGD) Classifier
using Scikit-Learn’s SGDClassifier class.

Training a Binary Classifier using SGD

● Stochastic Gradient Descent (SGD) Classifier

○ Capable of handling large datasets

○ Deals with training instances independently

○ Well suited for online training

Let’s create an SGDClassifier and train it on the whole training set:

TESTING SGD CLASSIFIER IN SCIKIT LEARN

>>> some_digit = X[0] # Taking the 11th image
>>>
sgd_clf.predict([some_digit])
array([True])

The classifier guesses that this image represents a 5 (True).

PERFORMANCE MEASURE - METHODS

PERFORMANCE MEASURE - CROSS VALIDATION

What is cross-validation?

● It involves splitting the training set into K distinct subsets called folds,
then training and evaluating the model K times, picking a different fold
for evaluation every time and training on the other K-1 folds.

● The result is an array containing K evaluation scores.

cross_val_score
cross_val_score() function in scikit-learn can be used to perform cross
validation.

Performance measure - Cross
Validation

Here k = 10

PERFORMING CROSS VALIDATION IN SCIKIT LEARN

>>> from sklearn.model_selection import
cross_val_score

>>> cross_val_score(sgd_clf, X_train, y_train_5,
cv=3, scoring="accuracy")

Classifier object No.of foldsScoring parameter Training data Labels

(Here, scoring parameter is accuracy)

ACCURACY

Accuracy is generally not the preferred performance measure for classifiers, especially when you are dealing
with skewed datasets (when some classes are much more frequent than others).

DUMB CLASSIFIER

� Dumb classifier that just classifies every single image in the “not-5”
class.

PERFORMING CROSS VALIDATION IN SCIKIT
LEARN

Accuracy = 95 % Accuracy = 90 %

SGDClassifier
Dumb Classifier -
Never5 Classifier

90%
Images
- Other
Than 5

10%
Images

- of
Digit 5

Our
Dataset

SKEWED DATASET

Skewed
Dataset

Class
Imbalance

90%
Images
- Other
Than 5

10%
Images

- of
Digit 5

Not 5

Not 5

Input MODEL’S
PREDICTION

Dumb Classifier -
Classifies every image

as “Not 5”

Accuracy → 90%

● Accuracy may not be a good performance measure when dealing
with skewed datasets

LEARNINGS??

PERFORMANCE MEASURES - CONFUSION MATRIX
● What is confusion matrix?

○ The general idea is to count the number of times instances of class A
are classified as class B.

○ Can be better than simple accuracy.
○ For example: to know the number of times the classifier confused

images of 5s with 3s

TN = True Negative
TP = True Positive
FN = False Negative
FP = False Positive

Predict
ed

Actu
al

Not-5s 5s

Not-5s

5
s

(Actual Image)

Not 5

T
N

(Predicted
Class)

TN - True
Negatives

Not-5s 5s

Not-5s

5
s

(Actual Image)

5

Predict
ed

Actu
al

F
P

FP - False Positives
(Predicted
Class)

Predicted

Actu
al

Not-5s 5s

Not-5s

5
s

(Actual Image)

Not 5

F
N FN - False

Negatives

(Predicted
Class)

Predicted

Actu
al

TP - True
Positives

Not-5s 5s

Not-5s

5s

T
P

(Actual Image)

5

(Predicted Class
)

� In-order to compute the confusion matrix we would
consider set of predictions so that they can be compared
to the actual targets.

� Keep test set aside and apply cross_val_predict()
function on train set.

cross_val_predict() performs K-fold cross-validation, and
returns the predictions made on each fold.
Confusion matrix is printed using confusion_matrix()
function. To this we pass the target classes (y_train_5) and
the predicted classes (y_train_pred):

CONFUSION MATRIX - EXAMPLE

For ‘5’ and ‘Not 5’ classifier
● Each row in a confusion matrix represents an actual class, while each

column represents a predicted class.
● The first row of this matrix considers non-5 images (the negative class):

○ 53,272 of them were correctly classified as non-5s (they are called
true negatives)

○ The remaining 1,307 were wrongly classified as 5s (false positives).

Not 5 53272 1307 54579

5 1077 4344 5421

Total 54349 5651 60000

Actual

Prediction

Not 5 5 Total

Confusion
Matrix

False Positive (FP)True Negative (TN)

False Negative (FN)
True Positive (TP)

For ‘5’ and ‘Not 5’ classifier

● The second row considers the images of 5s (the positive class):
○ 1,077 were wrongly classified as non-5s (false negatives)
○ The remaining 4,344 were correctly classified as 5s (true positives).

Actual

Prediction

Not 5

5

Total

Not 5 5 Total

53272 1307 54579

1077 4344 5421

54349 5651 60000

Confusion
Matrix

True Negative (TN) False Positive (FP)

False Negative (FN)
True Positive (TP)

� A perfect classifier would have only true positives and
true negatives, so its confusion matrix would have
nonzero values only on its main diagonal (top left to
bottom right):

� The confusion matrix gives a lot of information, but
sometimes we may prefer a more concise metric. An
interesting one to look at is the accuracy of the
positive predictions; this is called the precision of the
classifier

Performance measures - Precision and
recall
‘5’ and ‘Not 5’ classifier

�True - Positive means the classifier correctly classified the Positive class.
� True - Negative means the classifier correctly classified the Negative

class.
�False - Positive means the classifier incorrectly classified a Negative

class as Positive Class.

�False - Negative means the classifier incorrectly classified a Positive class
as Negative Class.

Recall, also called sensitivity or the true positive rate (TPR):

Precision and recall in scikit-learn

>>> from sklearn.metrics import precision_score,
recall_score
>>> precision_score(y_train_5,
y_train_pred)
 0.76871350203503808
>>> recall_score(y_train_5, y_train_pred)
0.79136690647482011

LET’S SEE ONE MORE EXAMPLE OF CONFUSION MATRIX OF
MODEL PREDICTING IF SOMEONE HAS CANCER OR

NOT

Cancer - No Cancer - Yes

Cancer - No 50 1
0

Cancer - Yes 5 100

Actua
l

PERFORMANCE MEASURES- CONFUSION
MATRIX

PREDICTED

TN FP

FN TP

Cancer - No Cancer -
Yes

Cancer - No 50 10

Cancer -
Yes

5 100

Actua
l

PERFORMANCE MEASURES- CONFUSION
MATRIX

PREDICTED

Total
Predictions

= 110

Cancer - No Cancer -
Yes

Cancer - No 50 10

Cancer -
Yes

5 100

Actual

PERFORMANCE MEASURES- CONFUSION
MATRIX

PREDICTED

Correct
Predictions

= 100

Precision -
100 out of

110
= 0.91

Cancer - No Cancer -
Yes

Cancer - No 50 10

Cancer -
Yes

5 100

Actua
l

PERFORMANCE MEASURES- CONFUSION
MATRIX

PREDICTED

Total Patients
Having Cancer
= 105

Model’s Predictions
as Having Cancer =
100Recall - 100 out of 105

= 0.95

● ‘5’ and ‘Not 5’ classifier

F1 score = harmonic mean of precision and
recall

Prediction

Actual

Not 5 5 Total Recall

Not 5 53272 1307 54579

5 1077 4344 5421 = 4344 / 5421

Total 54349 5651 60000

Precision = 4344/5651
= 76.87 %

F1 score = 0.78468

● F1 score using scikit-learn

>>> from sklearn.metrics import
f1_score
>>> f1_score(y_train_5, y_train_pred)

Say we have to build a model which detects if a video is safe for
kids or not.

Question - High Precision or High
Recall?

1 - Not
Safe

2 - Safe 3 - Not Safe

PERFORMANCE MEASURES- F1 SCORE

4 -
Safe

5 - Not Safe 6 -
Safe

High precision means if the model classifies video 4 and video 6 as safe for kids,
they are actually safe for kids.

High Precision

In high precision, we are okay if the model is not able to classify video 2 as safe for
kids but whichever videos it classifies as safe for kids they are actually safe.

PERFORMANCE MEASURES- F1 SCORE

High recall means the model will try to maximize the number of videos that are
classified as safe.

1 - Not Safe

4 - Safe 5 - Not Safe 6 - Safe

2 - Safe 3 - Not Safe

High
Recall

PERFORMANCE MEASURES- F1
SCORE

In high recall model may mistake while classifying video as safe. This is because recall
is more about classifying all the “safe for kids” videos as “safe” rather than classifying
all the videos correctly.

1 - Not
Safe

4 -
Safe

5 - Not Safe

High Recall
6 -
Safe

2 -
Safe

3 - Not
Safe

PERFORMANCE MEASURES- F1 SCORE

1 - Not
Safe

2 - Safe 3 - Not
Safe

4 -
Safe

6 -
Safe

High Precision or High Recall?

5 - Not
Safe

PERFORMANCE MEASURES- F1 SCORE

We would prefer a model which has high precision and low recall. It is okay if the
model rejects many good videos but keeps only really safe ones

5 - Not Safe 6 - Safe

1 - Not
Safe

2 -
Safe

3 - Not
Safe

4 -
Safe

High Precision, Low
Recall

Say we have to build a model which detects shoplifters on the basis of
surveillance image. In case, someone is marked as shoplifter, we
manually examine.

Question - High Precision or High
Recall?

Performance Measures - F1 Score

High Recall

We would prefer the model to have high recall even if the precision is low because
our goal is to catch almost all the shoplifters.

In the high recall, the security guard might catch and examine some non shoplifters
also but we will achieve our goal of catching almost all the shoplifters.

Precision Recall

PERFORMANCE MEASURES- F1 SCORE

Now you may think that we can have both high precision and high recall in a good model.
But unfortunately, we can’t have both high precision and high recall at the same time.

Precision Recall

PERFORMANCE MEASURES- F1
SCORE

Increasing the precision reduces recall and

Precision Recall

PERFORMANCE MEASURES- F1 SCORE

Vice versa

PERFORMANCE MEASURES - PRECISION VS RECALL

Performance measure
(down)

Detect videos that
are unsafe for kids

Detect shoplifters
in surveillance
images

Precision High Low

Recall Low High

FP should be low,
FN can be high

FP can be high,
FN should be low

Increasing precision reduces recall, and vice versa. This is called
the precision/recall tradeoff.

● Different use cases may require different precision and recall

Performance Measures- Precision / Recall
Tradeoff

To understand this tradeoff, lets see
how SGDClassifier works

Ye
sScore >

Threshold
“5” - Positive
Class

Classifier

No

“Not 5” - Negative Class

Training
Set

Decision
Score

PERFORMANCE MEASURES- PRECISION / RECALL
TRADEOFF

Decision Threshold - decided by the
classification algorithm

PRECISION / RECALL TRADEOFF - THRESHOLDS

● SGD Classifier makes its classification decision, for instance it computes
a score based on the decision function
○ Score above a certain threshold is classified as positive class
○ Score below a certain threshold is classified as negative class

● Thresholds can be set to achieve certain precision and recall.
Let us observe the above example : shows a few digits positioned from the
lowest score on the left to the highest score on the right.

PRECISION / RECALL TRADEOFF

TN - TN - TN - TN - TP - FP - TP - TP - FP - TP - TP - TP

TN = 6, TP = 6, FN = 0, FP = 2

Precision = 6/ (6+2) =
75% Recall = 6/(6+0) =

100%

TN - TN - TN - TN - FN - TN - FN - TP - FP - TP - TP - TP

TN = 5, TP = 4, FN = 2, FP = 1

Precision = 4/ (4+1) = 80%
Recall = 4/ (4+2) = 67%

PRECISION / RECALL TRADEOFF

?

TN - TN - TN - TN - FN - TN - FN - FN - TN - TP - TP - TP

TN = 6, TP = 3, FN = 2, FP = 0

Precision = 3/ (3+0) =
100% Recall = 3/(3+3) =

50%

Decision_function() method returns a score for each instance.
Then use any threshold for which we want to make predictions based
on those scores:

The SGDClassifier uses a threshold equal to 0 and returns True.
Let’s raise the threshold:

This confirms that raising the threshold decreases recall. The image
actually represents a 5, and the classifier detects it when the
threshold is 0, but it misses it when the threshold is increased to
8,000.

Scikit-Learn does not allow to set the threshold directly, but it does
provide access to the decision scores to make predictions.

How to decide the best threshold?

● Get the scores of all the training dataset using cross_val_predict with
decision_function as function

● Compute the precision and recall for all possible thresholds using
precision_recall_curve()

● Plot both precision and recall for the thresholds using matplotlib.

● Select the threshold value that gives the best precision/ recall tradeoff.

● Plotting precision/ recall curve using Scikit-Learn

>>> def plot_precision_recall_vs_threshold(precisions,
recalls, thresholds):

plt.figure(figsize=(18,7))
plt.plot(thresholds, precisions[:-1], "b--",
label="Precision") plt.plot(thresholds, recalls[:-1], "g-",
label="Recall") plt.xlabel("Threshold")
plt.legend(loc="upper
left") plt.ylim([0, 1])

>>> plot_precision_recall_vs_threshold(precisions,
recalls, thresholds)
>>> plt.show()● Precision increases while recall decreases with increase in

threshold
● Scikit enables the user to get the scores from the classifier

Precision / Recall Tradeoff

Q. How to decide the best threshold? What is the best threshold for below?

Precision

Precision and recall versus the
decision threshold

Recall

PRECISION / RECALL
CURVE

Precision and recall versus the
decision threshold

Precision

PRECISION / RECALL
CURVE

Precision and recall versus the
decision threshold

Recall

PRECISION / RECALL
CURVE

Which threshold value to
use?

PRECISION / RECALL
CURVE

PRECISION / RECALL CURVE

BUILDING MODEL WITH DESIRED PRECISION

● So let’s say you want to build a classifier with 90% precision
○ Then first select the threshold value which gives you 90%

precision
○ Then build classifier using this threshold

>>> threshold_90_precision = thresholds[np.argmax(precisions >= 0.90)]
>>> y_train_pred_90 = (y_scores >= threshold_90_precision)

This classifier will give
90% precision

BUILDING MODEL WITH DESIRED PRECISION

● Verify it

>>> precision_score(y_train_5, y_train_pred_90)
0.9000380083618396

>>> recall_score(y_train_5, y_train_pred_90)
0.4368197749492714

I want a model
with 99%
precision

ML EngineerBoss

At what
recall? :)

ML
Engineer

Boss

REVEW OF PRECISION/ RECALL TRADEOFF

● The user can subsequently set the threshold and obtain the
classification by a simple comparison.
>>> threshold = 200000

> threshold)>>> y_some_digit_pred =
(y_scores
>>> y_some_digit_pred
array([False],
dtype=bool)

● Hence, by selecting an appropriate threshold, the user can obtain the
desired precision. However, the best precision may not have the
best recall.

� Another way to select a good precision/recall trade-off is
to plot precision directly against recall, as shown in
figure.

We see that precision really starts to fall sharply around
80% recall.
We probably want to select a precision/recall trade-off just
before that drop—for example, at around 60% recall. But
of course, the choice depends on your project.

Suppose you decide to aim for 90% precision.
We look the first plot and search for the lowest threshold
that gives you at least 90% precision.
(np.argmax() will give you the first index of the maximum
value, which in this case means the first True value):

� To make predictions (on the training set for now), instead
of calling the classifier’s predict() method, you can run
this code:

THE ROC CURVE

� The receiver operating characteristic (ROC) curve is
another common tool used with binary classifiers.

� the ROC curve plots the true positive rate (another name
for recall) against the false positive rate (FPR).

● ROC Curve Similar to F1 score but uses a different metric
● Uses True Positive Rate (TPR) = Recall = TP / (TP + FN)
● False Positive Rate (FPR) = FP / (FP + TN)

= 1 - True Negative Rate (TNR)
● FPR is the ratio of negative instances that are incorrectly classified

as positive.
● True Negative Rate (TNR) = TN / (FP + TN)
● The TNR is also called specificity.
● Receiver Operating Characteristics (ROC) plots: TPR versus FPR

PERFORMANCE MEASURES - ROC CURVE

• ROC curve plots recall versus 1-specificity.
To plot the ROC curve, you first use the roc_curve() function
to compute the TPR and FPR for various threshold values:

Then you can plot the FPR against the TPR using Matplotlib.

PERFORMANCE MEASURES - ROC CURVE

Dotted line = purely
random classifier

PERFORMANCE MEASURES - ROC CURVE

● Higher the recall (TPR True Positive Rate), higher is the FPR

(False Positive Rate)

● Dotted line = purely random classifier

● Good classifier stays away from the dotted line towards top-left corner
● A perfect classifier shall have a ROC Area Under the Curve (AUC) equal

to 1 whereas a purely random classifier shall have ROC AUC = 0.5.

Scikit-Learn provides a function to compute the ROC AUC:
>>> from sklearn.metrics import roc_auc_score
>>> roc_auc_score(y_train_5, y_scores)
0.9611778893101814

REVIEW OF THE ML PROCESS - BINARY CLASSIFIER

● Divide the dataset into training and test samples

● Train the binary classifier

● Choose the appropriate metric for the task (recall, precision, F1,
ROC)

● Select the precision/ recall tradeoff that fits the needs

● Compare various models using ROC curves and ROC AUC curves

MULTICLASS CLASSIFICATION(MULTINOMIAL
CLASSIFICATION)

● Binary classifiers distinguish between two classes

● Algorithm such as Logistic Regression or Support Vector Machine

classifiers are strictly binary classifiers.

● While multi-class classifiers (also called multinomial classifiers) can

distinguish between more than two classes.

● Algorithm such as SGD classifiers, Random Forest classifiers, and naive

Bayes classifiers can handle multiple classes.

The various strategies that we can use to perform multiclass
classification with multiple binary classifiers.

1. One-versus-all (OvA) strategy also called
one-versus-the-rest(OvR) -
for example,

a. For eg. to classify the digit images into 10 classes (from 0 to
9) one way is to train 10 binary classifiers, one for each digit
(a 0-detector, a 1-detector, a 2-detector, and so on).

b. Then when you want to classify an image, you get the
decision score from each classifier for that image and you
select the class whose classifier outputs the highest score.

MULTICLASS CLASSIFICATION

0 1 2 3 4

MULTICLASS CLASSIFICATION

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

2 vs All classifier

1 vs All classifier

3 vs All classifier

4 vs All classifier

5 vs All classifier

2. One-versus-one (OvO) strategy
a. This is another strategy in which we train a binary classifier

for every pair of digits: one to distinguish 0s and 1s, another
to distinguish 0s and 2s, another for 1s and 2s, and so on.

b. If there are N classes, you need to train N × (N – 1) / 2
classifiers.

MULTICLASS CLASSIFICATION

⇣ 

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 vs 3 classifier

1 vs 3l classifier

1 vs 4 classifier

1 vs 5 classifier

4 vs 5 classifier

ERROR ANALYSIS

● Once the model (classifier) is identified, it can be improved by analyzing
the types of errors it makes

● For the previous multiclass classification example of classifying images of
digits into digit labels, it can be done by observing the confusion matrix and
plotting it on the graph

ERROR ANALYSIS

● Looks fairly good since most
images are on the diagonal

● 5s looks darker than other digits
- Q. What are the possible
reasons?
○ Fewer 5s in the dataset
○ Classifier does not perform

well on 5s
○ Both (Ans)

ERROR ANALYSIS

● We remove the possibility of fewer 5s in the dataset by normalizing it by
the number of samples in each dataset

>>> row_sums = conf_mx.sum(axis=1, keepdims=True)
>>> norm_conf_mx = conf_mx / row_sums
>>> np.fill_diagonal(norm_conf_mx, 0)
>>> plt.matshow(norm_conf_mx, cmap=plt.cm.gray)
>>> plt.show()

Observations:
1. 8 and 9 columns are bright:

1. many digits misclassified as 8 and 9
2. many 8 and 9 misclassified as other digits

3. (3,5) and (5,3) are abnormally bright: confusion between 3
and 5

Possible solutions:
1. Gather more training data for

8s and 9s
2. Pre-process images to make

certain features stand out more
3. Analyzing individual errors

Analyzing individual errors (plotting 3s and 5s)

Actual 3,
Predicted 3

Actual 5,
Predicted 3

Actual 3,
Predicted 5

Actual 5,
Predicted 5

Some written badly, most are errors. What can we do about the
errors?

Observation:

● Some digits are written badly while most are errors in
classification (between 3s and 5s).

● SGDClassifier assigns a weight per class to each pixel
and calculate the total score for a particular class

● Since 3s and 5s differ by a few pixels, the classifier is easily
confused - Main difference between 3 and 5 is the position of the
straight line

● Classifier is quite sensitive to image shifting and rotation

● Solution: Preprocess the image to ensure that they are well-centered

and not rotated

Possible Solution

