

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Branch: Information Science and Engineering

Course Code: 22IS6PCMLG

Course: Machine Learning

Semester: VI/V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	With suitable diagrams distinguish how a spam filter model built using machine learning technique is better compared to a traditional programming technique	CO1		10
	b)	Consider the Employee Data set and design the steps involved to transform the raw data into an understandable and readable format using the concept of data pre-processing using Sklearn libraries.	CO2	PO1	10
<p>Missing values</p>					
OR					
2	a)	If your model performs great on the training data but generalizes poorly to new instances, what is going wrong? Elaborate on the methods to resolve this.	CO1		4
	b)	Discuss GridSearch and Randomized Search along with suitable python code using Sklearn libraries.	CO2	PO1	8
	c)	Main task of machine learning is to select a learning algorithm and train it on some data, the two things that can go wrong are “bad algorithm” and “bad data.” Explain the main challenges with respect to “bad algorithm” and “bad data.”	CO1		8
UNIT - II					
3	a)	Consider a car dataset that classifies the vehicle into four types: Sedan, HatchBack, Sports car and MiniVan. Explain with suitable	CO1		6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		diagrams as to how OVA and OVO techniques can solve classification problem																																													
	b)	Illustrate how ROC curve shows the trade-off between sensitivity (TPR) and specificity (1 – FPR) based on AUC	CO2	PO1	4																																										
	c)	Design the following steps involved in building the Logistics Regression model using Sklearn libraries breast cancer dataset, <ul style="list-style-type: none"> Import Libraries and the dataset Splitting the dataset into the Training set and Test set with test size =20% Feature Scaling -Apply Standard Scalar on complete X-train and X-test Training the Logistic Regression model on the Training set Print the confusion matrix, accuracy score and classification report. 	CO2	PO1	10																																										
		OR																																													
4	a)	Design a Polynomial Regression model using Sklearn libraries considering Insurance.csv to calculate Insurance Premium based on age. Split the dataset with test size =30% and apply Standard Scalar as feature Scaling technique and print MAE,RMSE the performance measure.	CO3	PO2	10																																										
	b)	The dataset has four features – sepal length, sepal width, petal length and petal width with 150 rows that classify each instance as either Setosa, Versicolor, Virginica as shown in below diagram. Design a machine learning model using Sklearn libraries that identifies it as Setosa or not along with necessary pre-processing steps and performance measures.	CO3	PO2	10																																										
		<p>Samples (instances, observations)</p> <table border="1"> <thead> <tr> <th></th> <th>Sepal length</th> <th>Sepal width</th> <th>Petal length</th> <th>Petal width</th> <th>Class label</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>5.1</td> <td>3.5</td> <td>1.4</td> <td>0.2</td> <td>Setosa</td> </tr> <tr> <td>2</td> <td>4.9</td> <td>3.0</td> <td>1.4</td> <td>0.2</td> <td>Setosa</td> </tr> <tr> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> </tr> <tr> <td>50</td> <td>6.4</td> <td>3.5</td> <td>4.5</td> <td>1.2</td> <td>Versicolor</td> </tr> <tr> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> <td>...</td> </tr> <tr> <td>150</td> <td>5.9</td> <td>3.0</td> <td>5.0</td> <td>1.8</td> <td>Virginica</td> </tr> </tbody> </table> <p>Features (attributes, measurements, dimensions)</p> <p>Class labels (targets)</p>		Sepal length	Sepal width	Petal length	Petal width	Class label	1	5.1	3.5	1.4	0.2	Setosa	2	4.9	3.0	1.4	0.2	Setosa	50	6.4	3.5	4.5	1.2	Versicolor	150	5.9	3.0	5.0	1.8	Virginica			
	Sepal length	Sepal width	Petal length	Petal width	Class label																																										
1	5.1	3.5	1.4	0.2	Setosa																																										
2	4.9	3.0	1.4	0.2	Setosa																																										
...																																										
50	6.4	3.5	4.5	1.2	Versicolor																																										
...																																										
150	5.9	3.0	5.0	1.8	Virginica																																										
		UNIT - III																																													
5	a)	With suitable examples, explain the different regularization hyper parameters used for restricting the shape of the decision tree.	CO1		5																																										
	b)	Explain CART algorithm with cost function used for classification	CO1		5																																										
	c)	Consider you want to build a decision tree classifier that determines if a person will purchase a credit card or not . The classifier includes features such as age, income, credit rating, and a student. Find the best feature for the first and second split of the tree – the root node and depth 1 leaf nodes in the decision tree.	CO2	PO1	10																																										

		<p style="text-align: center;">OR</p>																																															
6	a)	<p>Design a Decision Tree model using SKlearn library for the petrol consumption dataset that has 4 features- petrol_tax, average_income,paved_highways and population_delivery which predicts petrolconsumption. Apply necessary pre-processing steps and performance measures. Predict the petrol consumption for values - [9,3471,1250,0.58].</p>	CO3	PO2	10																																												
	b)	<p>What role does the Gini index play in minimizing misclassification errors in decision tree models? Calculate Gini Index for past trend, open interest and trading volume .</p> <table border="1"> <thead> <tr> <th>Past Trend</th><th>Open Interest</th><th>Trading Volume</th><th>Return</th></tr> </thead> <tbody> <tr><td>Positive</td><td>Low</td><td>High</td><td>Up</td></tr> <tr><td>Negative</td><td>High</td><td>Low</td><td>Down</td></tr> <tr><td>Positive</td><td>Low</td><td>High</td><td>Up</td></tr> <tr><td>Positive</td><td>High</td><td>High</td><td>Up</td></tr> <tr><td>Negative</td><td>Low</td><td>High</td><td>Down</td></tr> <tr><td>Positive</td><td>Low</td><td>Low</td><td>Down</td></tr> <tr><td>Negative</td><td>High</td><td>High</td><td>Down</td></tr> <tr><td>Negative</td><td>Low</td><td>High</td><td>Down</td></tr> <tr><td>Positive</td><td>Low</td><td>Low</td><td>Down</td></tr> <tr><td>Positive</td><td>High</td><td>High</td><td>Up</td></tr> </tbody> </table>	Past Trend	Open Interest	Trading Volume	Return	Positive	Low	High	Up	Negative	High	Low	Down	Positive	Low	High	Up	Positive	High	High	Up	Negative	Low	High	Down	Positive	Low	Low	Down	Negative	High	High	Down	Negative	Low	High	Down	Positive	Low	Low	Down	Positive	High	High	Up	CO2	PO1	10
Past Trend	Open Interest	Trading Volume	Return																																														
Positive	Low	High	Up																																														
Negative	High	Low	Down																																														
Positive	Low	High	Up																																														
Positive	High	High	Up																																														
Negative	Low	High	Down																																														
Positive	Low	Low	Down																																														
Negative	High	High	Down																																														
Negative	Low	High	Down																																														
Positive	Low	Low	Down																																														
Positive	High	High	Up																																														
UNIT - IV																																																	
7	a)	<p>Demonstrate with an example how Ada boosting supports to train predictors sequentially.</p>	CO1		10																																												
	b)	<p>Design a machine learning model using Sklearn libraries for MNIST dataset by considering first 60,000 instances for training, and remaining 10,000 instances for testing. Apply dimensionality reduction to obtain principal components with variance ratio of 95 and use suitable model for classification.</p>	CO3	PO2	10																																												
OR																																																	
8	a)	<p>Illustrate with an example the iterative process of refining predictors in Gradient Boosting and how it leads to better predictive performance. How does Gradient Boosting differ from AdaBoost in terms of handling prediction errors?</p>	CO1		10																																												
	b)	<p>Discuss the need of Ensemble models. List and explain the different types Voting methods.</p>	CO1	PO1	5																																												

	c)	What are the two main approaches for dimensionality reduction? Explain in detail with necessary diagrams.	CO1	PO1	5																																				
		UNIT - V																																							
9	a)	Elucidate unsupervised learning? How unsupervised learning is different from supervised learning. Mention any 3 applications where you can apply unsupervised learning model.	CO1		10																																				
	b)	Considering below dataset, design the model involved in clustering the gender based on the similarity using necessary SKlearn libraries.	CO3	PO2	10																																				
		<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>Customer ID</th> <th>Gender</th> <th>Age</th> <th>Annual Income (k\$)</th> <th>Spending Score (1-100)</th> </tr> </thead> <tbody> <tr><td>1</td><td>Male</td><td>19</td><td>15</td><td>39</td></tr> <tr><td>2</td><td>Male</td><td>21</td><td>15</td><td>81</td></tr> <tr><td>3</td><td>Female</td><td>20</td><td>16</td><td>6</td></tr> <tr><td>4</td><td>Female</td><td>23</td><td>16</td><td>77</td></tr> <tr><td>5</td><td>Female</td><td>31</td><td>17</td><td>40</td></tr> <tr><td>6</td><td>Female</td><td>22</td><td>17</td><td>76</td></tr> </tbody> </table>					Customer ID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	1	Male	19	15	39	2	Male	21	15	81	3	Female	20	16	6	4	Female	23	16	77	5	Female	31	17	40	6	Female	22	17	76
Customer ID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)																																					
1	Male	19	15	39																																					
2	Male	21	15	81																																					
3	Female	20	16	6																																					
4	Female	23	16	77																																					
5	Female	31	17	40																																					
6	Female	22	17	76																																					
		OR																																							
10	a)	Given a dataset, a radius value (epsilon), and a minimum number of points (MinPts), how are core, border, and noise points defined by DBSCAN. Explain with an example. In what way does DBSCAN use those points to cluster the dataset?	CO1		10																																				
	b)	Apply K (=2)-Means algorithm over the data (185, 72), (170, 56), (168, 60), (179, 68), (182, 72), (188, 77) up to two iterations and show the clusters. Initially choose first two objects as initial centroids.	CO3	PO2	10																																				
