
UNIT -3
DECISION TREES



WHAT DO WE LEARN?

� Working with Decision Tree
⚫ Training and Visualizing 
⚫ Make Predictions & Decision Boundary

� Estimating Class Probabilities
� CART algorithm
� Computational Complexity
� Gini Impurity or Entropy
� Regularization Hyperparameters.



WHAT IS A DECISION TREE

� A decision tree is one of the supervised machine learning 
algorithms.

� Decision Trees are versatile Machine Learning 
algorithms that can perform both classification and 
regression tasks.

� A decision tree follows a set of if-else conditions to 
visualize the data and classify it according to the 
conditions.



EXAMPLE OF DECISION TREE



1. How to decide which feature should be located at the root node,

2. Most accurate feature to serve as internal nodes or leaf nodes,

3. How to divide tree,

4. How to measure the accuracy of splitting tree and many more.



Gini Index, also known as Gini impurity, calculates the amount of probability of a specific feature that is classified 
incorrectly when selected randomly. If all the elements are linked with a single class then it can be called pure.

it is nothing just the measure of disorder, or measure of purity. Basically, it is the measurement of the impurity 
or randomness in the data points.
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TRAINING AND VISUALIZING A DECISION TREE

� Let’s just build a Decision Tree and take a look at how it makes predictions. We'll train a 
DecisionTreeClassifier using Scikit Learn on the famous Iris  dataset.

�The iris dataset consists of 4 features namely :
● Petal Length

● Petal Width

● Sepal Length

● Sepal Width

�There are three classes namely :
● Iris Setosa

● Iris Versicolor

● Iris Virginica



Iris Dataset - Training and Visualizing a Decision Tree

The iris dataset has 4 features petal length, petal width, sepal length and  sepal width.

But here we’ll only use two features i.e. petal length and petal width



Training and Visualizing a Decision Tree

We will follow the following steps to train and visualize our decision tree

1. Load the Iris dataset using Scikit Learn

2. Select only the Petal length and Petal width features

3. Train our Decision Tree classifier on the Iris Dataset

4. Visualize our Decision Tree using export_graphviz()
5. export_graphviz() gives us a file in .dot format which we will convert to  png 

using the dot command line tool



UNDERSTANDING THE DECISION TREE AND MAKING PREDICTIONS

�A node’s value attribute tells  you how many training instances  of each class this 
node applies to  for example, the bottom-right  node applies to 0 Iris-Setosa, 1  Iris- 

Versicolor, and 45 Iris-Virginica.

�A node’s gini attribute  measures its impurity: a node is  “pure” (gini=0) if all 

training  instances it applies to belong to  the same class.

�For example, since the depth-1  left node applies only to Iris-Setosa training 
instances, it is  pure and its gini score is 0.



To make a prediction the  decision classifier follows these  steps :
● Start at the root node (depth  0, at the top), this node asks  whether the flower’s 

petal  length is smaller than or equal  to 2.45 cm:
● If it is, then you move down to  the root’s left child node  (depth 1, left). In this 

case it is  a leaf node hence the flower is  predicted as setosa.
● If it is not, then you move  down to the root’s right child  node (depth 1, right), 

since it  is not a leaf node it asks  further questions as, is the  petal width smaller 
than or  equal to 1.75 cm?

● If it is, then your flower is  most likely an Iris- Versicolor  (depth 2, left).
● If it is not, If not, it is likely an  Iris-Virginica (depth 2, right).



● A node’s samples attribute counts how many training instances it applies to
● For example, 100 training instances have a petal length greater than 2.45 cm 

(depth 1, right), and of those 100, 54 have a petal width smaller than 1.75 cm 
(depth 2, left).

• A node’s value attribute tells you how many training instances of each class this 
node applies to: for example, the bottomright node applies to 0 Iris setosa, 1 Iris 
versicolor, and 45 Iris virginica.



� A node’s gini attribute measures its impurity: a node is 
“pure” (gini=0) if all training instances it applies to 
belong to the same class.

� For example, since the depth-1 left node applies only to 
Iris setosa training instances, it is pure and its gini score 
is 0.

� A Gini coefficient of 1 expresses maximal inequality 
among the training  samples.

� The depth-2 left node has a gini score equal to 



Boundary 
made at 
depth 0.  
Petal length 
<= 2.45

DECISION TREE’S DECISION BOUNDARIES.

Boundary 
made at depth 
1.  Petal width 
<= 1.75

This would have 
been the decision  
boundary to divide 
the tree further
i.e. if max_depth 
was set to 3



ADVANTAGE

� Requires very little data preparation.
� Decision Tree uses white box models – Tree splitting is 

clear and inner working of these models are clearly 
understood.



ESTIMATING CLASS PROBABILITIES

A Decision Tree can also estimate the probability that an instance belongs to  a particular class k.

To do this it follows the following steps:

● First it traverses the tree to find the leaf node for this instance

● Then it returns the ratio of training instances of class k in this node.

For example: Suppose you have found a flower whose petals are 5 cm long and 1.5 cm wide.
 The corresponding leaf node is the depth-2 left node, so the Decision Tree should output the 
following probabilities: 
0% for Iris setosa (0/54), 
90.7% for Iris versicolor (49/54), and
9.3% for Iris virginica (5/54). 

It predicts the class as output Iris versicolor (class 1) because it has the highest
probability.

Run it in jupyter notebook



THE CART TRAINING ALGORITHM

� Scikit-Learn uses the Classification and Regression Tree 
(CART) algorithm to train Decision Trees (also called “growing” 
trees).

� The algorithm works by first splitting the training set into two 
subsets using a single feature k and a threshold 

   (e.g., “petal length ≤ 2.45 cm”).



� Once the CART algorithm has successfully split the training set in 
two, it splits the subsets using the same logic, then the sub-subsets, 
and so on, recursively. 

� It stops once it reaches the maximum depth(hyperparameter), or if it 
cannot find a split that will reduce impurity. 

� A few other hyperparameters stopping conditions 
(min_samples_split,  min_samples_leaf, min_weight_fraction_leaf, 
and max_leaf_nodes).



Important points on the CART Training Algorithm

● It is a greedy algorithm as it greedily searches for an optimum 

split at the  top level

● Then repeats the process at each level.

● It does not check whether or not the split will lead to the lowest 
possible  impurity several levels down.

● A greedy algorithm often produces a reasonably good 
solution, but it is  not guaranteed to be the optimal solution



COMPUTATIONAL COMPLEXITY OF DECISION TREES

● Making predictions requires traversing the Decision Tree from the root  to a leaf.

● Decision Trees are generally approximately balanced, so traversing the  Decision Tree 

requires going through roughly O(log2(m)) nodes, where  m is total number of training 

instances.

Complexity of Prediction :
● Since each node only requires checking the value of one feature, the  overall prediction 

complexity is just O(log2(m))

O   One feature checked i.e. petal  length

One feature checked i.e. petal  width

Hence, the complexity of prediction is independent 

of the number of  features. So predictions are very 

fast, even when dealing with large training sets.



● The training algorithm compares all features on all 

samples at each node.

● This results in a training complexity of O(n × m 

log(m)), where n is the  number of features, we have 

to compare all the n features at each of the  m nodes.



WHICH MEASURE TO USE ? GINI IMPURITY OR 
ENTROPY?

� By default, the Gini impurity measure is used.
� But if we want to select the entropy impurity measure by 

setting the hyperparameter to "entropy".
� The concept of entropy originated in thermodynamics as 

a measure of molecular disorder: entropy approaches 
zero when molecules are still and well ordered.

� In Machine Learning, entropy is frequently used as an 
impurity measure: a set’s entropy is zero when it contains 
instances of only one class



� The definition of the entropy of the ith node.

� Entropy equal to

� Gini impurity or entropy? 
⚫ Most of the time it does not make a big difference: they lead 

to similar trees.
⚫ Gini impurity is slightly faster to compute, so it is a good 

default.



REGULARIZATION HYPERPARAMETERS

� Decision Trees make very few assumptions about the training 
data. If left unconstrained, the tree

� structure will adapt itself to the training data and results into 
overfitting.

� Such a model is often called a nonparametric model, not 
because it does not have any parameters but because the 
number of parameters is not determined prior to training, so 
the model structure is free to stick closely to the data.

� In contrast, a parametric model, such as a linear model, has a 
predetermined number of parameters, so its degree of freedom 
is limited, reducing the risk of overfitting.



� To avoid overfitting the training data, you need to restrict 
the Decision Tree’s freedom during training with the 
concept of regularization.

� The regularization hyperparameters depend on the 
algorithm used, but generally you can at least restrict the 
maximum depth of the Decision Tree.

� In Scikit-Learn, this is controlled by the max_depth 
hyperparameter (the default value is None, which means 
unlimited). Reducing max_depth will regularize the 
model and thus reduce the risk of overfitting.



� The DecisionTreeClassifier class has a few other 
parameters that similarly restrict the shape of the 
Decision Tree:
⚫ min_samples_split -the minimum number of samples a node 

must have before it can be split.
⚫ min_samples_leaf - the minimum number of samples a leaf 

node must have.
⚫ min_weight_fraction_leaf - same as  min_samples_leaf  but 

expressed as a fraction of the total number of weighted 
instances.

⚫ max_leaf_nodes -the maximum number of leaf nodes.
⚫ max_features- the maximum number of features that are 

evaluated for splitting at each node.



� Figure 6-3 shows two Decision Trees trained on the 
moons dataset.

� On the left the Decision Tree is trained with the default 
hyperparameters (i.e., no restrictions), and on the right 
it’s trained with min_samples_leaf=4. It is quite obvious 
that the model on the left is overfitting, and the model on 
the right will probably generalize better.


