Unit -5

Chapter 9 Unsupervised
Learning Techniques

What we will learn??

Clustering

o K-means
o Limits of k-means

Using Clustering for Image Segmentation
Using Clustering for Pre-processing
DBSCAN

Machine Learning - Types

Regression

Human Unsupervised

Supervision?

Machine

Learn

Incrementally?

How they
generalize?!

Example of Unsupervised Machine Learning

* Let's, take the case of a baby and her family dog.

She knows and identifies this dog

Few weeks later a family friend brings along a dog
and tries to play with the baby.

Baby has not seen this dog earlier.

But it recognizes many features (2 ears, eyes,
walking on 4 legs) are like her pet dog.

She identifies the new animal as a dog.

This is unsupervised learning, where you are not
taught but you learn from the data (in this case
data about a dog.)

Had this been supervised learning, the family
friend would have told the baby that it's a dog.

Machine [.earning - Unsupervised [.earning

® The training data is unlabeled

® The system tries to learn without a teacher

Training set

. W ()
Q Q&
A £ - ()
'Q' ‘
)
o .

Q
-
.

INPUT RAW DATA ouTPUT

Algorithm
® Unknown Output
@ No Tralming Data Set
— —_— ;% -
/! \

Model Training Model Trained

Applications of
Unsupervised Learning

* The main applications of unsupervised learning includes:
o Clustering

* For example, you can go to Walmart or a supermarket and see how different items
are grouped and arranged there.

* e-commerce websites like Amazon use clustering algorithms to implement a
user-specific recommendation system.

* Libraries: It is used in clustering different books on the basis of topic and

information.
Divisive ingle-li
Hierarchical Single-linkage, Complete-
s e —— linkage, Average-linkage,
clustering Agglomerative Centroid-linkage, Ward-linkage

e ————— iv \ o
Clustering -
a'gorithms Center-based — K-Means, K-Medoids,

K-Centers, APM

Partitioning
~ clustering

. | Neighbor-based, DBSCAN,
Density-based —7 Density-peaks, Robust-DB

|
Spectral-based — PCCA, PCCA+
o e ®

* Visualization - Visualization is the process of creating diagrams,
1mages, graphs, charts, etc., to communicate some information.

For example: Consider you are a football coach, and you have some data
about your team’s performance in a tournament. You may want to find all
the statistics about the matches quickly.

You can feed the complex and unlabelled data to some visualization
algorithm.

These algorithms will output a two-dimensional or three-dimensional
representation of your data that can easily be plotted. So, by seeing the
plotted graphs, you can easily get a lot of information.

* Dimensionality reduction

Finding association rules- This is the process of finding associations
between different parameters in the available data.

The algorithm find some interesting relationships between attributes from
large amounts of data .

For example- when you visit website Amazon and buy some items, they will
show you products similar to those as advertisements, even when you are not
on their website.

Amazon can find associations between different products and customers.
They know that if they show a particular advertisement to a particular
customer, chances are high that he will buy the product.

Algorithms for association rule learning —
1. Apriori
2. Eclat

Anomaly detection- Anomaly detection is the identification of rare items,
events, or observations, which brings suspicions by differing significantly
from the normal data.

One important example of this is credit card fraud detection.

What is Unsupervised
Learning Techniques

Unsupervised learningis a type of machine
learning that looks for previously undetected patterns in
a data set with no pre-existing labels and with a
minimum of human supervision.

Users do not need to supervise the model.

Instead, 1t allows the model to work on its own to
discover patterns and information that was previously
undetected.

Unsupervised machine learning helps you to finds
all kind of unknown patterns in data.

Input

s

Annotations

[

These are
grapes

)7

Supervised Learning

@

Model

i?

It's Grapes

Prediction

Unsupervised Learning

Y
®

A &
b & d

O

N

Input

@ 4

Model \

©o
iidl

Output

What is Clustering

* Cluster analysis or clustering is the task of grouping a set of
objects 1n such a way that objects in the same group (called
a cluster) are more similar to each other than to those in other
groups (clusters).

CLUSTERING

RAW DATA ALGORITHM CLUSTERS OF DATA

sample Cluster/group

* Clustering mainly deals with finding a structure or pattern in a
collection of uncategorized data.

* Clustering algorithms will process your data and find natural
clusters(groups) if they exist in the data.

* Two popular clustering algorithms

o K-Means
o DBSCAN

K-means

The K-Means algorithm 1s capable of clustering unlabelled
dataset very quickly and efficiently, in few iterations.

e It was proposed by Stuart Lloyd at Bell Labs in 1957 as a
technique for pulse-code modulation.

* K-Means is sometimes referred to as Lloyd—Forgy.

Lloyd’s(K-means)
Algorithm

1. Pick k points at random from dataset => potential
clusters and Initialize the centroids randomly

2. For every point in dataset:

1. Compute distance to each cluster
2. Assign to cluster with minimal distance

3. Compute new clusters’ mean => updated clusters
4. Did clusters change significantly?

1. Yes [Jgo to step 2 for refinement
2. Otherwise [Istop

Consider an unlabelled dataset and train a K-Means
cluster on this dataset.

Try to find each blob’s center and assign each instance
to the closest blob.

Looking at the data that k should be set to 5.
Each instance was assigned to one of the five clusters

from sklearn.cluster import KMeans 301
k - 5 2.5 1
kmeans = KMeans(n_clusters=k) “

2.0 1

y_pred = kmeans. fit_predict(X)

1.5

1.0 1

-3 =2 -1 0
X1

Figure 9-2. An unlabeled dataset composed of five blobs of instances

* Five centroids that the algorithm found

>>> kmeans.cluster_centers_
array([[-2.80389616, 1.80117999],
[0.20876306, 2.25551336],
-2.79290307, 2.79641063],
-1.46679593, 2.28585348],
-2.80037642, 1.30082566]])

* You can easily assign new instances to the ciuster wnose
centroid 1s closest.

. e

>>> X_new = np.array([[0, 2], [3, 2], [-3, 3], [-3, 2.5]])
>>> kmeans .predict(X_new)
array([1, 1, 2, 2], dtype=int32)

* plot the cluster’s decision bounaaries

3.0 1

The vast majority of the instances were clearly assigned to the appropriate
cluster, but a few instances were probably mislabeled (especially near the
boundary between the top-left cluster and the central cluster).

Instead of assigning each instance to a single cluster, which is called hard
clustering.

Give each instance a score per cluster, which is called soft clustering.
The score can be the distance between the instance and the centroid.

The KMeans class, the transform() method measures the distance from each
instance to every centroid:

In this example, the first instance in X new is located at a distance of 2.81 from
the first centroid, 0.33 from the second centroid, 2.90 from the third centroid,
1.49 from the fourth centroid, and 2.89 from the fifth centroid.

>>> kmeans . transform(X_new)

array([[2.81093633, 0.32995317, 2.9042344 , 1.49439034, 2.88633901
[5.80730058, 2.80290755, 5.84739223, 4.4759332 , 5.84236351
[1.21475352, 3.29399768, 0.29040966, 1.69136631, 1.71086031
[0.72581411, 3.21806371, 0.36159148, 1.54808703, 1.21567622

)

)

d bed bed e

1)

Clustering Exercise
X

ltn o 00 B U1 NN
BEY O W N Oy O B <

®47 @57
® 2,6 ®56 @66
¢ 2,4 ® 4,4

® 63 ¢ 383

K-Means Algorithm for Clustering

® 2,6

® 2,4

® 47 @57

® 56 @66

® 4,4

® 63

® 52

¢ 8,3

Clustering Exercise

Distance to Cluster
(1,5 (4,1) (8,4) Number
1.41 3.61 6.00 C1
1.41 5.39 6.32 C1
4.12 5.10 3.61 C3

|teration - 1 Y
4
6
6
| 361 6.00 5.00 C1
3
6
2
7
3

C1- Seed Pointl- (1, 5)
C2 - Seed Point2- (4, 1)
C3 - Seed Point3-(8, 4)

D= V(=22 + (1= 32

728 447 1.00 C3
510 538 283 C3
500 141 3.61 C2
447 608 4.4 C3

639 283 224 C3

C1- Centroid - (2.66, 5.66)
C2 - Centroid - (4.5, 3)
C3 - Centroid - (6, 5)

BRI C] O OO0 P~ O DD M X

K-Means Algorithm for Clustering

2,6 ® 56 6, 6

(

2,4 4,4 /T«
®%,3 ¢ 8,3
./5'2

Clustering Exercise

Distance to Cluster
(2.66, 5.66) (4.5, 3) {6, 5) Number
1.79 209 412 Cf
0.74 39 412 (1
2.36 304 14 C3
1.90 403 283 (1
5.97 35283 03
3.36 3,35] C3
4,34 112 316 (2
2.70 403 224 (3
4,21 L2 C2

lteration - 2

C1-Centroid - (2.66, 5.66)
(2~ Centroid - (4.5, 3)

(3 - Centroid - (6, 5)

C1- Centroid - (2.66, 5.66)
C2 - Centroid - (5, 3)
(3 - Centroid - (6, 5.5)

EERCII €51 O> Oo B~ oo PO > Xk
O 1 PO OO LW N OO O B~ =

Clustering Exercise

Distance to Cluster
(2.66,5.66) (5,3) (6,5.5) Number
1.79 316 4.27 C1
0.74 424 403 C1
2.36 300 112 C3

|teration - 3 Y
4
6
6
7 1.90 412 250 C1
3
6
2
7
3

C1 - Centroid - (2.66, 5.66)
C2 - Centroid - (5, 3)
C3 - Centroid - (6, 5.5)

C1 - Centroid - (2.66, 5.66)
C2 - Centroid - (5.75, 3)
C3 - Centroid -(5.33,6.33)

5.97 3.00 3.29 C2
3.36 316 0.0 C3
4,34 100 364 C2
2.10 400 1.80 C3
4.21 1.00 250 C2

EEEEEECH O Oo P~ Oy D M X

Clustering Exercise

Distance to Cluster

(2.66, 5.66) (5.75,3) (5.33,6.33) Number
1.79 3.88 4.06 C1
0.74 4.80 3,00 C1
2.36 3.09 0.47 C3
1.90 4.37 1.49 C@
5.97 225 4.27 C2
3.36 3.01 0.75 C3
4.34 1.25 4.34 C2
2.70 4.07 0.75 C3
4.27 0.25 3.40 C2

2.13 2.02 2.68 C2

teration - 4

C1-Centroid - (2.66, 5.66)
C2 - Centroid = (5.75, 3)
C3-Centroid —(5.33,6.33)

C1-Centroid - (2, 5)
C2 - Centroid -(5.75, 3)
C3-Centroid - (5, 6.5)

2SSl p YR & S 2 o T o o T —~SHIECe 5 T N6 Tl S
A SSRGS VRS B S T @ 5 T s IO B e » TR e » i Sl

lteration - 5
C1-Centroid - (2, 5)
C2 - Centroid - (5.75, 3)
C3 - Centroid - (5, 6.5)

No movement of data Points
Hence these are the final
positions

Clustering Exercise

I D IO D S DS DD

Y
1
6
6
/
3
6
2
/
3
4

(2,9)
1.00
1.00
3.16
2.83
6.32
4.12
4.24
361
447
2.24

Distance to
(5.75, 3)
3.88
4.80
3.09
4,37
225
3.01
1.2
4,07
0.25
2.02

(5, 6.5
391
3,04
0.50
112
4,61
112
4.50
0.50
364
269

Cluster
Number

C1
C1
c3
c3
c2
c3
C2
c3
c2
c2 |

Clustering Exercise

 K-meansis one of the most popular clustering algorithms,
mainly because of its good time performance.

 With the increasing size of the datasets being analysed, the
computation time of K-means increases because of its
constraint of needing the whole dataset in main memory.

* For this reason, several methods have been proposed to reduce
the temporal and spatial cost of the algorithm.

o Mini batch K-means
o Accelerated K-means

Accelerated K-means

Accelerated K-Means is the default for Sklearn.

It considerably accelerates this algorithm by keeping track of
the lower and upper bounds for the distances between
instances and centroids.

Accelerated k-means is a variant of the k-means algorithm.
It uses some technology to accelerate the calculation.

Like k-means, accelerated k-means also has two steps in
each iteration: assigning each point to a cluster with closest
distance to its centre; calculating new centre of each cluster.
Moreover, the centre set and cluster partition set are exactly
the same with the ordinary k-means after each iteration.

The technologies used to accelerate iterations usually
involve caches that store information between iterations.
Therefore, 1t tends to use more memory than the ordinary
k-means.

Mini-batch K-Means

Instead of using the full dataset at each iteration, the algorithm is
capable of using mini-batches, moving the centroid slightly at each
iteration.

This increases the speed of the algorithm by a factor of 3—4
typically.

Especially important, it makes it possible to cluster huge datasets
that do not fit in memory.

One limitation 1s that its inertia 1s usually slightly worse, especially
as clusters increase, however with many clusters the speed is much
faster using mini-batch

Finding the optimal number of clusters

In this dataset we can see that there are clearly 5 clusters we want to
segment from each other. However that is not always the case, and often our
data isn’t as obviously segmented as this. Our result can be quite poor if we
don’t take precautions to figure out the optimal number of clusters:

Poor values for K

The first thought is to choose the k which minimises inertia, however we
cannot do that as inertia will always decrease with a higher k. Indeed,
the more clusters there are, the closer each instance will be to its closest
centroid, and therefore the lower the inertia will be.

As we can see with a k=8, we are splitting clusters for no good reason.

1200 A

1000 A

< 800 4

5 — Elbow

< ¢
400 4

200 4

Inertia as a function of k

Inertia drops very quickly up to 5, but then it decreases very slowly
afterwards.

Any k lower than 5 and the gain would be dramatic, and any higher and we
are not gaining much more information. This 1s a rather rough, subjective
way of assigning k, however it generally works pretty well. When doing this
it allows us to take context of a specific needs of a business problem too.
However, in this case we could see that there were 5 clusters we wanted to
segment. 4 clusters may be adequate but we should investigate the difference
between k=4 and k=5

What 1s interia

Inertia can be recognized as a measure of how internally
coherent clusters are.

Inertia 1s the sum of squared error for each cluster.

Therefore the smaller the inertia the denser the cluster(closer
together all the points are).

The KMeans algorithm clusters data by trying to separate
samples 1n n groups of equal variance, minimizing a criterion
known as the inertia or within-cluster sum-of-squares(WCSS)

Limits of K-Means

The most important limitations of Simple k-means are:

* The user has to specify k (the number of clusters) in the
beginning

* k-means can only handle numerical data

* k-means assumes that we deal with spherical clusters
and that each cluster has roughly equal numbers of
observations

What is Image Segmentation?

Imagine that you are going to cross the road, what you do before
you cross the road?

First, you see both sides of the road to determine the approaching
vehicles and other environmental objects, then you do some
amazing estimation of approaching speed and decide on when and
how to cross the road. All these happens within a fraction of time,
how amazing 1sn’t it.

Our brain captures the Images of both sides of the road

It detects the vehicles and other objects on the road == Object
Detection

Not only detect before that 1t determines the shape of every object it
detects == Image Segmentation

Using Clustering for Image
Segmentation

* Image segmentation 1s the task of partitioning an image into
multiple segments.

 Image segmentation 1s broadly categorized into two main

categories.

o Semantic Segmentation
o Instance Segmentation

* Semantic segmentation - all pixels that are part of the same object
type get assigned to the same segment. A pixel-level classification
is performed directly, we consider all those pixels belong to one
class, so we represent them all by one color.

* For example- in a self-driving car’s vision system, all pixels that
are part of a pedestrian’s image might be assigned to the
“pedestrian” segment (there would be one segment containing all
the pedestrians).

Instance segmentation - All pixels that are part of the same
individual object are assigned to the same segment.

On the other hand 1n instance segmentation, approaches an
additional object detection step is needed to obtain the
individual instances of all classes 1n an 1mage. Those pixels
belong to the same class but we represent different instances of
the same class with different colors.

There would be a different segment for each pedestrian.

We do it using color segmentation - assign pixels to the same
segment 1f they have a similar color.

For example- if you want to analyze satellite images to
measure how much total forest area there is in a region, color
segmentation may be just fine.

Objects Detected — Semantic Segments — Instance Segments PC: mc.ai

* In the first image, we can see that detected objects all are men.

* In semantic segmentation, we consider all those pixels belong
to one class, so we represent them all by one color.

* On the other hand in instance segmentation, those pixels
belong to the same class but we represent different instances of
the same class with different colors.

* Clustering algorithms are used to group closer the data
points that are more similar to each other, from other
group data points.

* Now think of an image that holds apple and orange.
Most of the pixel points in apple should be red/green,
which 1s different from the pixel values of orange. If we
can cluster these points we can distinguish each object
from one another right. That’s how the cluster-based
segmentation works. Let’s see some code samples now.

from skimage.io import imread

from skimage.color import rgbZgray
import numpy as np

import matplotlib.pyplot as plt
$matplotlib inline

from scipy import ndimage

Scaling the image pixels values within 0-1
img = imread('./apple-orange.jpg') / 255

/cluster-based-image-segmentat

plt.imshow (img)
plt.title('Original')
plt.show()

For clustering the image using k-means, we first need to convert it
into a 2-dimensional array
image 2D = img.reshape (img.shape[0]*img.shape[l], img.shape[2])

Use KMeans clustering algorithm from sklearn.cluster to cluster
pixels in image
from sklearn.cluster import KMeans

tweak the cluster size and see what happens to the Output
kmeans = KMeans (n_clusters=5, random state=0).fit (image 2D)
clustered = kmeans.cluster centers [kmeans.labels]

Reshape back the image from 2D to 3D image
clustered 3D = clustered.reshape (img.shape[0], img.shape[l],
img.shape([2])

plt.imshow(clustered 3D)
plt.title('Clustered Image')
plt.show()

Using Clustering for
Preprocessing

Clustering can be an efficient approach as a pre-processing step
before a supervised learning algorithm.

MNIST-like dataset containing 1,797 grayscale 8 x 8 images
representing the digits 0 to 9.

First, load the dataset.

from sklearn.datasets import load_digits

split- X_digits, y_digits = load_digits(return_X_y=True)

from sklearn.model_selection import train_test_split

X_train, X_test, y train, y test = train_test_split(X_digits, y digits)

 fit a Logistic Regression model
from sklearn.linear_model import LogisticRegression

log reg = LogisticRegression()
log reg.fit(X _train, y train)

* accuracy on the test set:

>>> log _reg.score(X_test, y test)
0.9688888888888889

* Using K-Means as a pre-processing step, can do better
Stepl : first cluster the training set into 50 clusters.

Step 2: Replace the images with their distances to these 50
clusters.

Step 3: apply a Logistic Regression model
Step 4: Evaluate this classification pipeline

from sklearn.pipeline import Pipeline

pipeline = Pipeline([
("kmeans", KMeans(n_clusters=50)),
("log_reg", LogisticRegression()),
D
pipeline.fit(X_train, y_train)

REduceh VALV V1 A VUL 1 aly IJJ ullllUDl-« 30()/0

>>> pipeline.score(X _test, y test)
Q.9777777777777777

Why do we need DBSCAN Clustering?

* Let’s try to understand 1t with an example. Here we have data
points densely present in the form of concentric circles:

Dataset

L e e atat e
. o, " a N ';_ -
© .-:(-..«:... *-. - o ;.;l\' . .
.-\-~“'.'- ! o . . e ., * :
Q%% o 0.4 O . el
X AN S
S b L TAE
S 12 R - e B Y VR ¢ 4
R ¢ SR | " St . 90°.°
of e oo » . - . 4
.’.\.' - ES : ‘ .’. ® . : -'.q.." % }.J
~ G H . b 32y . W\ Yo o
. y . ‘o~ . . -
4 .t “ b4 ""é—‘ 1‘ .
2 ~¢ 1 . 0 %
g .

.: l.f‘.'., 4 . N
» 197 er" ., . 'Jﬁ-' :
Y « * A « S
ST se’ “» 8 -;1 Wt
s Pr bR N A B
. 7 }\-”. 34‘0K~ e .
L Sk Nakd '
-t LN .
40c . o
- —t‘)(l 00 .E‘D o

° 0 wo []
Feature 1

 We can see three different dense clusters in the form of
concentric circles with some noise here. Now, let’s run
K-Means and Hierarchical clustering algorithms and see how

they cluster these data points.

K-Means Clustering

Hierarchical Clustering

* We might be wondering why there are four colors in the
graph?

* This data contains noise too and 1s represented by the purple
color. Sadly, both of them failed to cluster the data points.
Also, they were not able to properly detect the noise present in
the dataset. Now, let’s take a look at the results from
DBSCAN clustering.

 DBSCAN is not just able to cluster the data points correctly,
but 1t also perfectly detects noise in the dataset.

DBSCAN Clustering

3 - - ¥ - 3
~ . DA, ’
. ~r -
.
%

What Exactly is DBSCAN Clustering?

DBSCAN stands for Density-Based Spatial Clustering
of Applications with Noise.

It was proposed by Martin Ester et al. in 1996. DBSCAN is a
density-based clustering algorithm that works on the assumption
that clusters are dense regions in space separated by regions of
lower density.

It groups ‘densely grouped’ data points into a single cluster.

The most exciting feature of DBSCAN clustering is that it is
robust to outliers.

It also does not require the number of clusters to be told beforehand,
unlike K-Means, where we have to specify the number of centroids.

Essentials Terms

e Epsilon(eps): The maximum distance a point can be from
another point to be considered a neighbor.
or

Epsilon 1s the radius of the circle to be created around each
data point to check the density.

* Min_Points(min_samples): The amount of points needed
within the range of epsilon to be considered a cluster.

* The minimum number of data points required inside that
circle for that data point to be classified as a Core point.

* Metric: The metric to use when calculating distance
between instances in a feature array (i.e. euclidean distance).

The algorithm works by computing the distance between every
point and all other points. We then place the points into one of
three categories.

Core Points — Points that have the Min Points required
within epsilon (including itself). These points along with
border points will form a cluster.

Border Points — This is a point that has neighbors within
epsilon but not enough neighbors to be a core point. These
points make up the edge of the cluster.

Noise — This 1s a point that does not have enough neighbors
within epsilon to be part of a cluster (including itself).

Let’s understand 1t with the help of an example.

Data points represented by grey color.
Let’s see how DBSCAN clusters these data points.

DBSCAN creates a circle of epsilon radius around every data
point and classifies them into Core point, Border point,
and Noise.

A data point 1s a Core point if the circle around it contains at
least ‘minPoints’ number of points. If the number of points is
less than minPoints, then it 1s classified as Border Point, and if
there are no other data points around any data point
within epsilon radius, then it treated as Noise.

The figure shows us a cluster created by DBCAN
with minPoints = 3.

Here, we draw a circle of equal radius epsilon around
every data point. These two parameters help in
creating spatial clusters.

All the data points with at least 3 points in the circle
including itself are considered as Core points
represented by red color.

All the data points with less than 3 but greater than 1
point in the circle including itself are considered
as Border points. They are represented by yellow
color.

Finally, data points with no point other than itself
present inside the circle are considered
as Noise represented by the purple color.

For locating data points in space, DBSCAN
uses Euclidean distance.

DBSCAN Algorithm

Label points as core, border and noise
Eliminate noise points
For every core point p that has not been assigned to a cluster

o Create a new cluster with the point p and all the
points that are density-connected to p.
Assign border points to the cluster of the closest core point.

When DBSCAN Works Well

Original Points

Clusters

» Resistant to Noise

 Can handle clusters of different shapes and sizes

DBSCAN: Core, Border and
Noise Points

Point types: , border
and noise

Original Points

Eps =10, MinPts = 4

DBSCAN: Determining Eps and MinPts

« Idea is that for points in a cluster, their k'™ nearest neighbors are at
roughly the same distance
« Noise points have the k™ nearest neighbor at farther distance
* So, plot sorted distance of every point to its k™ nearest neighbor
* Find the distance d where there is a “knee” in the curve
o Eps=d, MinPts =k

[4)]
o

N
(4]

N
(o]

o

o

o

(4]

4th Nearest Neighbor Distance

= = N N W W
[4)]

Eps ~ 7-10
MinPts = 4

o
13
A

i R i i i
0 500 1000 1500 2000 2500 3000
Points Sorted According to Distance of 4th Nearest Neighbor °

(4]
T

o

 DBSCAN, or Density-Based Spatial Clustering of
Applications with Noise, 1s an unsupervised machine learning
algorithm. Unsupervised machine learning algorithms are used
to classify unlabeled data.

 DBSCAN is particularly well suited for problems which
require:
Minimal domain knowledge to determine the input

parameters (i.e. K in k-means and Dmin in hierarchical
clustering)

Discovery of clusters with arbitrary shapes
Good efficiency on large databases

