

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Information Science and Engineering

Duration: 3 hrs.

Course Code: 20IS6PCSTG

Max Marks: 100

Course: Software Testing


Date: 12.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		
			CO	PO	Marks
1	a)	Differentiate between Verification and Validation	<i>CO1</i>		04
	b)	Previously encountered faults are an excellent source of information in designing new test cases. Justify this statement by explaining the three different fault-based testing methods.	<i>CO1</i>		06
	c)	Identify 4 test scenarios for E-commerce website like “Amazon” & design 3 functional test cases each for any two scenarios using standard test case template	<i>CO4</i>	<i>PO3</i>	10
		OR			
2	a)	Justify how Test automation is beneficial over manual testing.	<i>CO1</i>		04
	b)	Apply and demonstrate any 3 Logic faults in a single program.	<i>CO2</i>	<i>PO1</i>	06
	c)	Identify 4 test scenarios for Booking.com website & design 3 functional test cases each for any two scenarios using standard test case template.	<i>CO4</i>	<i>PO3</i>	10
		UNIT - II			
3	a)	Illustrate the steps involved in code review process with a neat diagram	<i>CO1</i>		06
	b)	Analyze and generate test cases using normal boundary value analysis for an amusement park website which allows only those people with age (20-40) and height (140-160cms)	<i>CO3</i>	<i>PO2</i>	06
	c)	Design test cases for Triangle problem using weak robust Equivalence class testing by partitioning 3 input variables(a,b,c) into 4,3 and 2 classes respectively.	<i>CO4</i>	<i>PO3</i>	08
		OR			
4	a)	Analyze and create 2 mutants (along with code) for the below program. Design 2 test cases to identify whether the mutants are equivalent, killable or stubborn.	<i>CO4</i>	<i>PO3</i>	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

		<pre> #include <stdio.h> void main() { int i=0,upper=0,lower=0,digit=0; char ch[100]; printf("Enter the String:\n"); gets(ch); while(ch[i]!=0){ if(ch[i]>='A' && ch[i]<='Z'){ upper++; } else if(ch[i]>='a' && ch[i]<='z'){ lower++; } else{ digit++; } i++; } printf("lowercase letters: %d",lower); printf("\nuppercase letters: %d",upper); printf("\ndigits: %d",digit); } </pre>			
	b)	Consider a company “XYZ” portal allows the people with 5-10 years of experience and with expertise between 4-8 domains only to apply for a particular position. Analyze and generate test cases using robust boundary value analysis	CO3	PO2	07
	c)	Design test cases for Next Date problem using weak normal Equivalence class testing by considering portioning of Input domain of Month into 3 classes, date into 4 classes and Year into 3 classes.	CO4	PO3	06
UNIT - III					
5	a)	Design a data flow graph for the below code snippet.	CO4	PO3	06
		<pre> int n,m sum=0 Input n while(n>0) { m=n%10 sum=sum+m n=n/10 } Print sum </pre>			
	b)	Analyze the below Data Flow diagram to find the factorial of a number and prepare the Definition Usage Table, DU Pair table and tabulate the test suite for feasible test inputs and their paths using All Definitions, All C-Uses, All P-Uses, All C-uses /Some P-uses and All P-uses/Some C-uses for variable ‘i’	CO3	PO2	10

UNIT - IV								
6	a)	Illustrate any six types of interface errors.	CO1	06				
	b)	Apply appropriate System integration testing approaches which uses Stubs and Test drivers with an example each.	CO2 PO1	08				
	c)	<p>Imagine a bank "ABC" gives the interest rate on the fixed deposits (consider- Fixed deposit of 1,00,000/-) according to below age groups:</p> <p>Interest rate is 8% if the age of a person is > 60 years.</p> <p>Interest rate is 7% if the age of a person is 40-59 years.</p> <p>Interest rate is 6% if the age of a person is 20-39 years.</p> <p>Interest rate is 5% if the age of a person is <19 years.</p> <p>Design the appropriate test cases for the above criteria using equivalence class testing with the following columns given below:</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center; padding: 5px;">Test case number</th> <th style="text-align: center; padding: 5px;">Equivalence class being tested</th> <th style="text-align: center; padding: 5px;">Test value</th> <th style="text-align: center; padding: 5px;">Expected result</th> </tr> </thead> </table>	Test case number	Equivalence class being tested	Test value	Expected result	CO4 PO3	06
Test case number	Equivalence class being tested	Test value	Expected result					
UNIT - V								
7	a)	Imagine you are a part of User Acceptance testing team. Apply the pre-requisites required before the planning phase of User Acceptance testing begins.	CO2 PO1	04				
	b)	Illustrate ISO 9126 quality characteristics	CO1	06				
	c)	Describe all the McCall's quality factors and explain each of them.	CO1	10				