

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2023 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Institutional Elective

Duration: 3 hrs.

Course Code: 20IS70EAIM

Max Marks: 100

Course: Artificial Intelligence and Machine Learning

Date: 22.02.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) Define Artificial Intelligence. With the help of a schematic diagram, briefly explain how agents interact with environments through sensors and actuators.	06
	b) Give the PEAS description for “Automated Taxi” agent.	04
	c) Define the characteristics of uninformed search strategies. Design an algorithm for Breadth-first search as general graph-search algorithm and comment on time and space complexity for the same.	10

UNIT - II

2	a) Write the greedy best-first search algorithm. Illustrate its working with an example.	10
	b) Explain how a constraint satisfaction problem can be applied to a cryptarithmic problem.	10

OR

3	a) Write the AO* search algorithm. Illustrate its working with an example.	10
	b) Illustrate the working of A* search algorithm with an example.	10

UNIT - III

4	a) Define well-posed learning problem. Explain with any two examples.	10
	b) For the below training examples, apply candidate elimination algorithm to show the specific and general boundaries of the version space.	10

Size	colour	shape	Target Concept
Big	Red	triangle	Negative
Small	Red	triangle	Negative
Small	Red	Circle	Positive
Big	Blue	Circle	Negative
Small	Blue	circle	Positive

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV

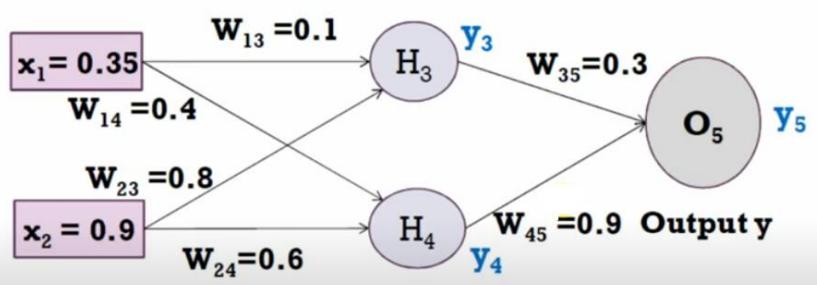
5 a) For the below given dataset, apply ID3 algorithm. Justify your answer by constructing a decision tree

12

Sl. No.	Age	Income	Student	Credit rating	Buys computer
1.	≤ 30	High	No	Fair	No
2.	≤ 30	High	No	Excellent	No
3.	31 to 40	High	No	Fair	Yes
4.	> 40	Medium	No	Fair	Yes
5.	> 40	Low	Yes	Fair	Yes
6.	> 40	Low	Yes	Excellent	No
7.	31 to 40	Low	Yes	Excellent	Yes
8.	≤ 30	Medium	No	Fair	No
9.	≤ 30	Low	Yes	Fair	Yes
10.	> 40	Medium	Yes	Fair	Yes
11.	≤ 30	Medium	Yes	Excellent	Yes
12.	31 to 40	Medium	No	Excellent	Yes
13.	31 to 40	High	Yes	Fair	Yes
14.	> 40	Medium	No	Excellent	No

b) Analyze the appropriate problems for Decision Tree Learning method.

08


UNIT - V

6 a) ANN learning is well-suited to problems in which the training data corresponds to noisy, complex sensor data, such as inputs from cameras and microphones. Analyze appropriate problems for neural network learning.

b) Assume that neurons have a sigmoid activation function. Perform forward pass and backward pass on the network. Assume that the actual output of Y is 0.5 and learning rate is 1.

10

10

OR

7 a) Use perceptron learning rule to train the network, the set of input training vector are as follows $X_1=[1, -2, 0, 1]$, $X_2=[0, 1.5, -0.5, -1]$, initial weight vector W_1 is $[1, -1, 0, 0, 5]$. The desired response is $D_1=-1$ and $D_2=-1$. Calculate the weights after one complete cycle.

b) Consider a multilayer feed forward neural network. Enumerate and explain the steps in backpropagation algorithm used to train a neural network.

10

10
