

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December / January 2024 Supplementary Examinations

Programme: B.E.

Branch: Common to all Branches

Course Code: 21MA1BSCDE

Course: Calculus and Differential Equations

Semester: I

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
			With the usual notations prove that $\tan \varphi = r \frac{d\theta}{dr}$ for the curve $r = f(\theta)$.			CO1	PO1	6
			Show that the following pairs of curves $r = a(1 + \sin \theta)$ and $r = a(1 - \sin \theta)$ intersect orthogonally.			CO1	PO1	7
			Find the radius of curvature for the curve $x^3 + y^3 = 3axy$ at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$.			CO1	PO1	7
UNIT - II								
			a) Expand $\log_e \sec x$ by Maclaurin series up to the term containing x^4 .			CO1	PO1	6
			b) If $u = f(x - y, y - z, z - x)$ show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.			CO1	PO1	7
			c) Examine the function $xy(a - x - y)$ for extreme values.			CO2	PO1	7
OR								
			a) If $u = \log(x^3 + y^3 + z^3 - 3xyz)$ show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$.			CO1	PO1	6
			b) If $z = f(x, y)$, $x = e^u + e^{-v}$ and $y = e^{-u} - e^v$, prove that $z_u - z_v = xz_x - yz_y$.			CO1	PO1	7
			c) If $x + y + z = u$, $y + z = v$, $z = uvw$ then show that $\frac{\partial(x,y,z)}{\partial(u,v,w)} = uv$.			CO2	PO1	7
UNIT - III								
			a) Find the rank of the matrix $\begin{bmatrix} 1 & 1 & -1 & 0 \\ 4 & 4 & -3 & 1 \\ 2 & 2 & 2 & 2 \\ 0 & 9 & 2 & 3 \end{bmatrix}$ by reducing it to echelon form.			CO1	PO1	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Apply Gauss Seidel method to find the approximate solution of $20x + y - 2z = 17$, $3x + 20y - z = -18$ and $2x - 3y + 20z = 25$.	CO1	PO1	7
	c)	Find the largest eigen value and eigen vector of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ using Rayleigh's power method by taking the initial vector as $[1, 1, 1]^T$.	CO2	PO1	7
UNIT - IV					
5	a)	Solve $\cos x (e^y + 1)dx + \sin x e^y dy = 0$.	CO1	PO1	6
	b)	Find the orthogonal trajectories of the family of curves $r^n \cos n\theta = a^n$.	CO2	PO1	7
	c)	Solve $xy p^2 - (x^2 + y^2)p + xy = 0$.	CO1	PO1	7
OR					
6	a)	Solve $\frac{dx}{dy} + \frac{x}{y} = x^3 y^2$.	CO1	PO1	7
	b)	Show that family of parabolas $y^2 = 4a(x + a)$ is self-orthogonal.	CO2	PO1	7
	c)	Obtain general and singular solution of $xp^3 - yp^2 + 1 = 0$.	CO1	PO1	6
UNIT - V					
7	a)	Solve $\frac{d^2y}{dx^2} - 4y = \cosh(2x - 1) + 3^x$.	CO1	PO1	7
	b)	Solve $(D^2 - 2D + 2)y = e^x \tan x$ by the method of variation of parameters.	CO1	PO1	7
	c)	Solve $(x^2 D^2 - xD + 1)y = x^2 \log x$.	CO2	PO1	6
