

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2025 Semester End Main Examinations

Programme: B.E.

Branch: Common to all Branches

Course Code: 21MA1BSCDE

Course: Calculus and Differential Equations

Semester: I

Duration: 3 hrs.

Max Marks: 100

Instructions:

1. All units have internal choice, answer one complete question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - 1	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Derive an expression for the angle between the radius vector and the tangent to the polar curve $r = f(\theta)$.	1	1	6
		b)	Obtain the pedal equation of the curve $r^m \cos(m\theta) = a^m$.	1	1	7
		c)	Determine the radius of curvature of $x^3 + y^3 = 3axy$ at $\left(\frac{3a}{2}, \frac{3a}{2}\right)$.	1	1	7
OR						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	Show that the pair of curves $r = 4 \sec^2\left(\frac{\theta}{2}\right)$ and $r = 9 \cosec^2\left(\frac{\theta}{2}\right)$ intersect each other orthogonally.	1	1	6
		b)	Find the pedal equation of the polar curve $\frac{2a}{r} = 1 - \cos(\theta)$.	1	1	7
		c)	If ρ_1 and ρ_2 are the radii of curvature at the extremities of a chord through the pole for the polar curve $r = a(1 + \cos\theta)$, prove that $\rho_1^2 + \rho_2^2 = \frac{16a^2}{9}$.	1	1	7
UNIT - 2						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	3	a)	Obtain the Taylor's series expansion of $f(x) = \cos(x)$ in powers of $\left(x - \frac{\pi}{3}\right)$ up to third degree term.	1	1	6
		b)	If $w = r^m$, show that $\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} = m(m+1)r^{m-2}$ where $r^2 = x^2 + y^2 + z^2$.	1	1	7
		c)	Determine the Jacobian $J\left(\frac{x, y, z}{u, v, w}\right)$ when $x = \sqrt{vw}$, $y = \sqrt{uw}$ and $z = \sqrt{uv}$.	1	1	7

OR					
4	a)	Obtain the Maclaurin's series expansion of $f(x) = \tan^{-1}(x)$ up to the second degree term.	1	1	6
	b)	Find the value of n for which the function $\theta = t^n e^{-r^2/4t}$ satisfies $\frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 \frac{\partial \theta}{\partial r} \right] = \frac{\partial \theta}{\partial t}$.	1	1	7
	c)	Find the extreme values of the function $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$.	1	1	7
UNIT - 3					
5	a)	Determine the values of a and b for which the system of equations $x + 2y + 3z = 6$, $x + 3y + 5z = 9$ and $2x + 5y + az = b$ have i) No solution ii) Unique solution iii) Infinitely many solutions.	1	1	6
	b)	Apply Gauss-Seidel iteration method to obtain an approximate solution of the system of equations $10x + y + z = 12$; $2x + 10y + z = 13$ and $2x + 2y + 10z = 14$. Perform 3 iterations.	1	1	7
	c)	Apply Rayleigh's power method to determine the dominant eigenvalue and the corresponding eigenvector of the matrix $A = \begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$ choosing $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ as the initial approximation. Perform 4 iterations.	1	1	7
OR					
6	a)	$x + y + z = 1$ For what values of k the system of equations $2x + y + 4z = k$ has $4x + y + 10z = k^2$ a solution.	1	1	6
	b)	Apply Gauss- Seidel iteration method to obtain an approximate solution of $5x + 2y + z = 12$; $x + 4y + 2z = 15$ and $x + 2y + 5z = 20$ by taking the initial approximation as $(1, 0, 3)$. Carry out 3 iterations.	1	1	7
	c)	Obtain the eigenvalues and the corresponding eigenvectors of the matrix $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$.	1	1	7
UNIT - 4					
7	a)	Solve $\frac{2x}{y^3} dx + \frac{y^2 - 3x^2}{y^4} dy = 0$.	1	1	6
	b)	Show that the family of curves $y^2 = 4a(x + a)$ is self-orthogonal.	1	1	7
	c)	Solve the differential equation $p^2 + 2py \cot(x) = y^2$ by solving for p .	1	1	7

OR					
8	a)	Solve $y' + \frac{y}{2x} = \frac{x}{y^3}$ subject to $y(1) = 2$.	1	1	6
	b)	Solve $(3x^2 y^4 + 2xy)dx + (2x^3 y^3 - x^2)dy = 0$.	1	1	7
	c)	Obtain the orthogonal trajectories of the family of curves $r = a(1 + \cos(\theta))$.	1	1	7
UNIT - 5					
9	a)	Solve $(D^2 + 1)y = x^3 + \cos 3x$.	1	1	6
	b)	Solve $y'' + y = \sec x$ by the method of variation of parameters.	1	1	7
	c)	Solve $x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + 6y = 4x - 6$.	1	1	7
OR					
10	a)	Solve $\frac{d^2y}{dx^2} + 4 \frac{dy}{dx} - 5y = e^{-3x} + 5$.	1	1	6
	b)	Apply the method of variation of parameters to solve $\frac{d^2y}{dx^2} + y = \operatorname{cosec}(x)$.	1	1	7
	c)	Solve $(2x + 5)^2 \frac{d^2y}{dx^2} - 6(2x + 5) \frac{dy}{dx} + 8y = 6x$.	1	1	7
