

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Branch: Common to all Branches

Course Code: 21MA1BSCDE

Course: Calculus and Differential Equations

Semester: I

Duration: 3 hrs.

Max Marks: 100

Date: 24.05.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Show that $\tan^{-1}\left(\frac{2e}{1-e^2}\right)$ is the angle of intersection for the pair of curves 6
 $r = \frac{a}{\log \theta}$ and $r = a \log \theta$.

b) Find the pedal equation of the polar curve $r(1-\cos \theta) = 2a$ and hence prove 7
 that ρ^2 varies as r^3 , if ρ is the radius of curvature.

c) Obtain the radius of curvature for the curve Folium $x^3 + y^3 = 3axy$ at the point 7
 $\left(\frac{3a}{2}, \frac{3a}{2}\right)$.

UNIT - II

2 a) If $\theta = t^n e^{-r^2/4t}$, what value of n will make $\frac{1}{r^2} \left[\frac{\partial}{\partial r} \left(r^2 \frac{\partial \theta}{\partial r} \right) \right] = \frac{\partial \theta}{\partial t}$. 6

b) Verify that $JJ' = 1$ if $u = x + \frac{y^2}{x}$, $v = \frac{y^2}{x}$. 7

c) The altitude of a right circular cone is 15cm and is increasing at 0.2cm/s . The radius of the base is 10cm and is decreasing at 0.3cm/s . How fast is the volume changing? 7

OR

3 a) Expand the function $f(x) = 2x^3 + 7x^2 + x - 6$ in powers of $(x-2)$. 6

b) If $x^x y^y z^z = c$, show that $z_{xy} = -\left[x \log_e(e x)\right]^{-1}$ when $x = y = z$. 7

c) In a plane triangle find the maximum value of $\cos A \cos B \cos C$ where 7
 A, B and C are the angles of the triangle.

UNIT - III

4 a) For what values of 'k' the system of equations $x + y + z = 1$; $x + 2y + 4z = k$ and $x + 4y + 10z = k^2$ have a solution and solve them completely in each case. 6

b) Apply Gauss-Seidel iteration method to solve the system of equations $20x + y - 2z = 17$; $2x - 3y + 20z = 25$ and $3x + 20y - z = -18$ by carrying out three iterations. 7

c) Apply Rayleigh power method to determine the dominant Eigen value and the corresponding Eigen vector of the matrix $\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$ by performing three iterations using the initial approximation $[1 \ 0 \ 0]^T$. 7

UNIT - IV

5 a) Solve the differential equation $(x^3 y^2 + xy)dx = dy$. 6

b) Solve the differential equation $(xy^2 - e^{1/x^3})dx - x^2 ydy = 0$. 7

c) Find the general and singular solutions of the non-linear differential equation $\sin(px)\cos y = \cos(px)\sin y + p$. 7

OR

6 a) Solve the differential equation $\left(\frac{y}{(x+y)^2} - 1\right)dx + \left(1 - \frac{x}{(x+y)^2}\right)dy = 0$. 6

b) Solve the differential equation $y^2 y' - y^3 \tan x - \sin x \cos^2 x = 0$. 7

c) Show that the family of curve $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$, 'λ' being the parameter is self-orthogonal. 7

UNIT - V

7 a) Solve the differential equation $(D^2 + 4D + 4)y = x^2 + 2x$ given $y(0) = 0$ and $y'(0) = 0$. 6

b) Apply the method of variation of parameters to solve the differential equation $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} = e^x \sin x$. 7

c) Solve the differential equation $(1+x)^2 \frac{d^2y}{dx^2} + (1+x) \frac{dy}{dx} + y = \sin[2\log(1+x)]$. 7
