

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Branch: Common to all Branches

Course Code: 18MA1BSEM1

Course: Engineering Mathematics - 1

Semester: I

Duration: 3 hrs.

Max Marks: 100

Instructions to Candidates: Answer FIVE FULL questions, choosing one from each unit.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - I

- 1 a) Derive an expression for the angle between radius vector and tangent in the form of $\tan(\phi) = r \frac{d\theta}{dr}$. 6
 b) Show that ρ for the curve $r^n = a^n \cos n\theta$ varies inversely as r^{n-1} . 7
 c) Obtain the Maclaurin's series expansion of the function $\log\left(\sqrt{\frac{1+x}{1-x}}\right)$ up to third degree term. 7

UNIT - II

- 2 a) If $u = e^x \sin(yz)$ where $x = t^3, y = t - 1$ and $z = \frac{1}{t}$, then find $\frac{du}{dt}$ at $t = 1$. 6
 b) If $z = f(x, y)$ where $x = r \cos(\theta)$ and $y = r \sin(\theta)$, then show that $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$. 7
 c) Obtain the Maclaurin's series expansion of the function $e^x \log(1 + y)$ up to the third degree terms. 7

OR

- 3 a) If $x = r \sin(\theta) \cos(\phi), y = r \sin(\theta) \sin(\phi)$ and $z = r \cos(\theta)$, then find $J = \frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}$. 6
 b) Obtain the extreme values of the function $f(x, y) = x^3 + 3xy^2 - 15y^2 - 15x^2 + 72x$. 7
 c) Expand $xy^2 + \cos(xy)$ about the point $(1, \frac{\pi}{2})$ using the Taylor's theorem up to the second degree terms. 7

UNIT - III

- 4 a) Evaluate $\int_1^2 \int_1^{x^2} (x^2 + y^2) dy dx$ by changing the order of integration. 6
 b) Evaluate $\int_0^a \int_0^x \int_0^{x+y} e^{x+y+z} dz dy dx$. 7

c) Prove that $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.

7

OR

5 a) Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$ by changing into polar coordinates.

6

b) Find the area enclosed by the curve $r = a(1 + \cos\theta)$ between $\theta = 0$ and $\theta = \pi$.

7

c) Show that $\int_0^{\pi/2} \sqrt{\sin\theta} d\theta \times \int_0^{\pi/2} \frac{1}{\sqrt{\sin\theta}} d\theta = \pi$.

7

UNIT - IV

6 a) Solve: $x^3 \frac{dy}{dx} - x^2 y = -y^4 \cos(x)$.

6

b) Solve: $y(2x - y + 1)dx + x(3x - 4y + 3)dy = 0$.

7

c) Find the orthogonal trajectories of the family of curves $r = 4a \sec(\theta) \tan(\theta)$.

7

UNIT - V

7 a) Solve: $(D^2 - 4D + 4)y = 8(e^{2x} + \sin(2x) + x^2)$.

6

b) Apply the method of variation of parameters to solve
 $(D^2 + 2D + 2)y = e^{-x} \sec^3 x$.

7

c) Solve: $(3x + 2)^2 y'' + 3(3x + 2)y' - 36y = 3x^2 + 4x + 1$.

7
