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Instructions to Candidates: Answer FIVE FULL questions, choosing one from each 

unit.      
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  UNIT - I  

1 a) Derive an expression for the angle between radius vector and tangent in the 

form of tan(∅) = 𝑟
𝑑𝜃

𝑑𝑟
. 

6 

 b) Show that 𝜌 for the curve 𝑟𝑛 =  𝑎𝑛𝑐𝑜𝑠𝑛𝜃 varies inversely as 𝑟𝑛−1. 7 

 
  

 c) Obtain the Maclaurin’s series expansion of the function log (√
1+𝑥

1−𝑥
) up to 

third degree term. 
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  UNIT - II  
 

2 a) If 𝑢 =  𝑒𝑥 sin(𝑦𝑧)  where 𝑥 = 𝑡3, 𝑦 = 𝑡 − 1 and 𝑧 =
1

𝑡
, then find 

𝑑𝑢

𝑑𝑡
 at 𝑡 = 1. 6 

 b) If 𝑧 = 𝑓(𝑥, 𝑦) where 𝑥 = 𝑟 cos(𝜃) and 𝑦 = 𝑟 sin(𝜃), then show that 

 (
𝜕𝑧

𝜕𝑥
)

2
+ (

𝜕𝑧

𝜕𝑦
)

2
= (

𝜕𝑧

𝜕𝑟
)

2
+

1

𝑟2 
 (

𝜕𝑧

𝜕𝜃
)

2
. 
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 c) Obtain the Maclaurin’s series expansion of the function 𝑒𝑥 log(1 + 𝑦) up to 

the third degree terms. 
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  OR 
 

3 a) If 𝑥 = 𝑟 sin(𝜃) cos(∅),   𝑦 = 𝑟 sin(𝜃) sin(∅) and 𝑧 = 𝑟 cos(𝜃), then find 

( )

( )

, ,

, ,

x y z
J

r  


=


. 

 

6 

 b) Obtain the extreme values of the function 

  𝑓(𝑥, 𝑦) = 𝑥3 + 3𝑥𝑦2 − 15𝑦2 − 15𝑥2 + 72𝑥. 

 

7 

 

 

c) Expand 𝑥𝑦2 + cos(𝑥𝑦) about the point (1,
𝜋

2
) using the Taylor’s theorem up 

to the second degree terms. 
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  UNIT - III 
 

 

4 
 

a) Evaluate ∫ ∫ (𝑥2 + 𝑦2)𝑑𝑦𝑑𝑥
𝑥2

1

2

1
 by changing the order of integration.  
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 b) Evaluate ∫ ∫ ∫ 𝑒𝑥+𝑦+𝑧𝑑𝑧𝑑𝑦𝑑𝑥
𝑥+𝑦

0

𝑥

0

𝑎

0
 . 7 

U.S.N.           



 

 

 
 

c) Prove that 𝛽(𝑚, 𝑛) =   
𝛤(𝑚)𝛤(𝑛)

𝛤(𝑚+𝑛)
. 
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  OR 
 

 

5 
 

a) Evaluate  ∫ ∫ 𝑒−(𝑥2+𝑦2)𝑑𝑥 𝑑𝑦
∞

0

∞

0
 by changing into polar coordinates. 

 

6 

 b) Find the area enclosed by the curve 𝑟 = 𝑎(1 + 𝑐𝑜𝑠𝜃) between 𝜃 = 0 and   

𝜃 = 𝜋. 

7 

 
c) Show that ∫ √𝑠𝑖𝑛𝜃 𝑑𝜃 × ∫

1

√𝑠𝑖𝑛𝜃
 𝑑𝜃 = 𝜋  

𝜋 2⁄

0

𝜋 2⁄

0
. 7 

  UNIT - IV 
 

 

6 
 

a) Solve: 𝑥3 𝑑𝑦

𝑑𝑥
− 𝑥2𝑦 = −𝑦4 cos(𝑥)  .      

 

6 

 b) Solve: 𝑦(2𝑥 − 𝑦 + 1)𝑑𝑥 + 𝑥(3𝑥 − 4𝑦 + 3)𝑑𝑦 = 0. 7 

 c) Find the orthogonal trajectories of the family of curves 𝑟 = 4𝑎 sec(𝜃) tan(𝜃). 7 

  UNIT - V 
 

7 a) Solve: (𝐷2 − 4𝐷 + 4)𝑦 = 8(𝑒2𝑥 + sin(2𝑥) + 𝑥2). 6 

 b) Apply the method of variation of parameters to solve 

 (𝐷2 + 2𝐷 + 2)𝑦 = 𝑒−𝑥𝑠𝑒𝑐3𝑥. 

7 

 c) Solve: (3𝑥 + 2)2 𝑦′′ + 3(3𝑥 + 2)𝑦′ − 36𝑦 = 3𝑥2 + 4𝑥 + 1. 7 

 

                ****** 


