

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2024 Semester End Main Examinations

Programme: B.E.

Semester: I

Branch: Common to all Branches

Duration: 3 hrs.

Course Code: 18MA1BSEM1

Max Marks: 100

Course: Engineering Mathematics-1

Instructions: Answer FIVE FULL questions, choosing one from each unit.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - I

1 a) Find the angle between the curves $r^n \cos(n\theta) = a^n$ and $r^n \sin(n\theta) = b^n$. **06**
 b) Find the radius of curvature for the curve $y^2 = 4ax$ at any point on it. **07**
 c) Obtain the Maclaurin's series expansion of the function $\sqrt{1 + \sin(2x)}$. **07**

UNIT - II

2 a) If $z(x + y) = x^2 + y^2$, then show that $\left[\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right]^2 = 4 \left[1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right]$. **06**
 b) If $u = x + 3y^2 - z^3$, $v = 4x^2yz$ and $w = 2z^2 - xy$ evaluate $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at the point $(1, -1, 0)$. **07**
 c) Obtain the Maclaurin's series expansion of the function $f(x, y) = e^x \cos(y)$ upto second degree terms. **07**

OR

3 a) If $u = f(2x - 3y, 3y - 4z, 4z - 2x)$, then prove that $6u_x + 4u_y + 3u_z = 0$. **06**
 b) Expand $f(x, y) = e^{xy}$ in Taylor's series at $(1, 1)$ upto second degree terms. **07**
 c) Find the extreme values of the function $f(x, y) = x^3 + y^3 - 3y - 12x + 20$. **07**

UNIT - III

4 a) Evaluate $\int_0^1 \int_x^{\sqrt{x}} (x^2 + y^2) dy dx$. **06**
 b) Evaluate $\int_0^{\infty} \int_0^{\infty} e^{-(x^2+y^2)} dx dy$ by changing into polar coordinates. Hence show that $\int_0^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$. **07**
 c) Prove that $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$. **07**

OR

5 a) Evaluate: $\int_{-c}^c \int_{-b}^b \int_{-a}^a (x^2 + y^2 + z^2) dx dy dz$. **06**
 b) Find the area enclosed by the curve $r = a(1 + \cos(\theta))$ between $\theta = 0$ and $\theta = \pi$. **07**

c) Express $\int_0^\infty \frac{dx}{1+x^4}$ in terms of Beta function and hence evaluate.

07

UNIT – IV

6 a) Solve: $\frac{dy}{dx} - y \tan(x) = y^2 \sec(x)$. **06**

b) Solve: $x^2 y \, dx - (x^3 + y^3) \, dy = 0$. **07**

c) Show that $y^2 = 4a(x + a)$, where a is the parameter is a self-orthogonal family of curves. **07**

UNIT – V

7 a) Solve: $(D^2 - 4D + 4)y = \cos(2x)$. **06**

b) Apply the method of variation of parameters to solve $\frac{d^2y}{dx^2} + y = \tan(x)$. **07**

c) Solve: $(1 + x)^2 \frac{d^2y}{dx^2} + (1 + x) \frac{dy}{dx} + y = \sin[\log(1 + x)^2]$. **07**
