

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2025 Semester End Main Examinations

Programme: B.E.

Semester: I

Branch: Common to all Branches

Duration: 3 hrs.

Course Code: 18MA1BSEM1

Max Marks: 100

Course: ENGINEERING MATHEMATICS- 1

Instructions:

1. All units have internal choices, answer one complete question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT – 1			CO	PO	Marks
1	a)	Obtain an expression for the angle between radius vector and the tangent of the polar curve $r = f(\theta)$.	1	1	6
	b)	Find the radius of curvature at any point on the asteroid $x^{2/3} + y^{2/3} = a^{2/3}$ at the point (a, a) .	2	1	7
	c)	Expand $\tan x$ in powers of x up to x^4 using Maclaurin's series.	2	1	7
OR					
2	a)	Find the pedal equation of the curve $r = ae^{\theta \cot \alpha}$ where α is a parameter.	2	1	6
	b)	Prove that the curves $r^n = a^n \cos n\theta$ and $r^n = b^n \sin n\theta$ intersect orthogonally.	2	1	7
	c)	Expand $\sin(x)$ in powers of $(x - \frac{\pi}{2})$ upto 3 rd degree term.	2	1	7
UNIT – 2					
3	a)	If $u = f(r, s, t)$ where $r = 2x - 3y$, $s = 3y - 4z$ and $t = 4z - 2x$ then prove that $6 \frac{\partial u}{\partial x} + 4 \frac{\partial u}{\partial y} + 3 \frac{\partial u}{\partial z} = 0$.	2	1	6
	b)	If $z(x + y) = x^2 + y^2$ then show that $\left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)^2 = 4\left(1 - \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}\right)$	2	1	7
	c)	Expand $f(x, y) = x^2y + 3y - 2$ in powers of $(x - 1)$ and $(y + 2)$ upto second degree terms.	2	1	7
OR					
4	a)	If $u = \log(\tan x + \tan y + \tan z)$ then prove that $(\sin 2x) \frac{\partial u}{\partial x} + (\sin 2y) \frac{\partial u}{\partial y} + (\sin 2z) \frac{\partial u}{\partial z} = 2$.	2	1	6
	b)	If $u = x + 3y^2 - z^3$, $v = 4x^2yz$ and $w = 2z^2 - xy$ then find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at $(1, -1, 0)$.	2	1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	If A, B, C are the angles of a triangle show that the maximum value of $\cos A \cos B \cos C$ is $1/8$.	2	1	7
UNIT – 3					
5	a)	Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} y^2 dy dx$ by changing the order of integration.	2	1	6
	b)	Evaluate $\int_{-1}^1 \int_0^z \int_{x-z}^{x+z} (x+y+z) dy dx dz$.	2	1	7
	c)	Prove that $\int_0^{\pi/2} \sqrt{\sin \theta} d\theta \times \int_0^{\pi/2} \frac{1}{\sqrt{\sin \theta}} d\theta = \pi$.	2	1	7
OR					
6	a)	Evaluate $\int_0^{\infty} \int_0^{\infty} e^{-(x^2+y^2)} dx dy$ by changing into polar coordinates.	2	1	6
	b)	Find the volume of the tetrahedron bounded by the planes $x=0, y=0, z=0, x+y+z=1$.	2	1	7
	c)	With the usual notations, prove that $\beta(m, n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$.	1	1	7
UNIT – 4					
7	a)	Solve: $y(2xy + e^x)dx - e^x dy = 0$.	2	1	6
	b)	Solve: $(4xy + 3y^2 - x)dx + x(x+2)dy = 0$.	2	1	7
	c)	Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$ where λ is a parameter.	2	1	7
OR					
8	a)	Solve $\frac{dy}{dx} - y = \frac{2xy^2}{e^x}$.	2	1	6
	b)	Solve: $\left[y \left(1 + \frac{1}{x} \right) + \cos(y) \right] dx + \left[x + \log x - x \sin(y) \right] dy = 0$.	2	1	7
	c)	Find the orthogonal trajectories of the family of curves $r = a(1 + \sin \theta)$.	2	1	7
UNIT – 5					
9	a)	Solve: $y'' + 4y' - 12y = e^{2x} - 3 \sin 2x$.	2	1	6
	b)	Apply the method of variation of parameters to solve $(D^2 + 1)y = \sec x$.	2	1	7
	c)	Solve: $(2x+1)^2 y'' - 6(2x+1)y' + 16y = 8(2x+1)^2$.	2	1	7
OR					
10	a)	Solve: $\frac{d^2y}{dx^2} - 6 \frac{dy}{dx} + 9y = 6e^{3x} - \log 2$.	2	1	6
	b)	Apply the method of variation of parameters to solve $y'' + y = \sec x \tan x$.	2	1	7
	c)	Solve: $x^2 \frac{d^2y}{dx^2} - 6x \frac{dy}{dx} + 8y = 6x$.	2	1	7
