

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Semester: I

Branch: Common to all Branches

Duration: 3 hrs.

Course Code: 18MA1BSEM1

Max Marks: 100

Course: Engineering Mathematics-1

Date: 24.05.2023

Instructions to Candidates: Answer **FIVE FULL** questions, choosing one from each unit.

UNIT - I

1 a) Find the angle of intersection between the curves $r = \sin(\theta) + \cos(\theta)$ and $r = 2 \sin(\theta)$. **06**
b) Obtain the radius of curvature of the parabola $y^2 = 4ax$ at any point on it. **07**
c) Obtain the Maclaurin's series expansion of the function $\log(\sec(x))$ up to third degree terms. **07**

UNIT - II

2 a) If $u = \log(\tan x + \tan y + \tan z)$, then prove that $\sin(2x) \frac{\partial u}{\partial x} + \sin(2y) \frac{\partial u}{\partial y} + \sin(2z) \frac{\partial u}{\partial z} = 2$. **06**
b) Determine $J = \frac{\partial(u, v, w)}{\partial(x, y, z)}$ given $u = x^2 + y^2 + z^2$, $v = xy + yz + zx$ and $w = x + y + z$. **07**
c) Obtain the extreme values of $f(x, y) = x^3 y^2 (1 - x - y)$. **07**

OR

3 a) Show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$, for $u = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)$. **06**
b) If $u = f(x, y)$ where $x = r \cos(\theta)$ and $y = r \sin(\theta)$, then show that $\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = \left(\frac{\partial u}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial u}{\partial \theta}\right)^2$. **07**
c) Expand $x^2 y + 3y - 2$ in powers of $(x - 1)$ and $(y + 2)$ using Taylor's theorem up to second degree terms. **07**

UNIT - III

4 a) Find the area enclosed by the curve $r = a(1 + \cos\theta)$ between $\theta = 0$ and $\theta = \pi$. **06**
b) Change the order of integration and hence evaluate $\int_0^a \int_{x/a}^{\sqrt{x/a}} (x^2 + y^2) dy dx$. **07**

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

c) Evaluate $\int_0^2 (8 - x^3)^{-1/3} dx$ using Beta-Gamma functions.

07

OR

5 a) Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} (xyz) dz dy dx$.

06

b) Show that the area of the region outside the circle $r = a$ and inside the cardioid $r = a(1 + \cos(\theta))$ is $\frac{a^2}{4}(\pi + 8)$.

07

c) Apply Beta-Gamma functions to evaluate $\int_0^3 \frac{x^{3/2}}{\sqrt{3-x}} dx$.

07

UNIT - IV

6 a) Find the orthogonal trajectories for the family of semi-cubical parabola $ay^2 = x^3$.

06

b) Solve: $(y^2 e^{xy^2} + 4x^3)dx + (2xye^{xy^2} - 3y^2)dy = 0$.

07

c) Solve: $(y \log(x) - 2)ydx = xdy$ given $y(1) = 1$.

07

UNIT - V

7 a) Solve: $\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = e^{-x} + \cos(2x)$.

06

b) Apply the method of variation of parameters to solve the differential equation $\frac{d^2y}{dx^2} - y = \frac{2}{(1+e^x)}$.

07

c) Solve: $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = \log(x)$.

07
