

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Branch: Computer Science Stream

Course Code: 22MA1BSMCS

Course: Mathematical Foundation for Computer Science Stream – 1 **Date: 12.05.2023**

Semester: I

Duration: 3 hrs.

Max Marks: 100

Instructions: Answer any FIVE full questions, choosing one full question from each unit.

UNIT - I

1 a) Obtain the pedal equation of the polar curve $r^m \cos(m\theta) = a^m$ where 'a' is constant. 6
 b) Find the angle of intersection of the polar curves $r(1 + \cos \theta) = a$ and $r(1 - \cos \theta) = b$. 7
 c) If ρ be the radius of curvature at any point P on the parabola $y^2 = 4ax$ and S be its focus, then show that ρ^2 varies as $(SP)^3$. 7

UNIT - II

2 a) Let $F=F(x, y, z)$ and $x = u + v + w$, $y = vw + wu + uv$ and $z = uvw$, then show that $u \frac{\partial F}{\partial u} + v \frac{\partial F}{\partial v} + w \frac{\partial F}{\partial w} = x \frac{\partial F}{\partial x} + 2y \frac{\partial F}{\partial y} + 3z \frac{\partial F}{\partial z}$. 6
 b) A flat circular plate is heated so that the temperature at any point (x, y) is $u(x, y) = x^2 + 2y^2 - x$. Find the coldest point on the plate. 7
 c) Expand $f(x, y) = e^x \log(1 + y)$ in powers of x and y up to third degree terms. 7

OR

3 a) If $v = \log_e(x^2 + y^2 + z^2)$ then prove that $(x^2 + y^2 + z^2)[v_{xx} + v_{yy} + v_{zz}] = 2$. 6
 b) If $u = x + \frac{y^2}{x}$, $v = \frac{y^2}{x}$ then verify that $JJ' = 1$ where $J = \frac{\partial(u,v)}{\partial(x,y)}$ and $J' = \frac{\partial(x,y)}{\partial(u,v)}$. 7
 c) Find the extreme values of the function $f(x, y) = x^3 + y^3 - 3y - 12x + 20$. 7

UNIT - III

4 a) Solve: $\frac{dy}{dx} = \frac{y}{x + \sqrt{xy}}$. 6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

b) Solve $xdx + (x^2y + 4y)dy = 0, y(4) = 0.$ 7

c) Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2+\lambda} = 1$, where λ is the parameter. 7

UNIT - IV

5 a) Find the remainder when 4^{1000} is divided by 7. 6

b) A general counts the number of surviving soldiers of a battle by aligning them successively in rows of certain sizes. Each time, he counts the number of remaining soldiers who failed to fill a row. The general initially had 1200 soldiers before the battle; after the battle

- aligning them in rows of 7 soldiers leaves 4 remaining soldiers;
- aligning them in rows of 11 soldiers leaves 6 remaining soldiers;
- aligning them in rows of 13 soldiers leaves 9 remaining soldiers;

How many soldiers survived the battle?

c) Apply RSA algorithm to find the public and private key using $p=3$ and $q=11$ and hence encrypt a certain message with plain text numeral “29”. 7

OR

6 a) Show that $63! \equiv -1 \pmod{71}.$ 6

b) A small clothing manufacturer produces two styles of sweaters: cardigan and pullover. She sells cardigans for Rs.31 each and pullovers for Rs.28 each. If her total revenue from a day's production is Rs.146, how many of each type might she manufacture in a day? 7

c) Solve: $x^3 + 2x + 2 \equiv 0 \pmod{49}.$ 7

UNIT - V

7 a) Determine the values of a and b for which the system $x+2y+3z=6;$
 $x+3y+5z=9$ and $2x+5y+az=b$ have (i) no solution (ii) unique solution (iii) infinite number of solutions. 6

b) Apply Gauss-Seidel method to solve the system of equations $2x+y+6z=9;$
 $8x+3y+2z=13$ and $x+5y+z=7$ by taking the initial approximation as $(0,0,0).$ Perform three iterations. 7

c) Apply Rayleigh Power method to find the numerically largest eigenvalue and the corresponding eigenvector of the matrix $\begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$ by taking initial approximation to the eigenvector as $[1 \ 0.8 \ -0.8]^T.$ Perform three iterations. 7
