

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Semester: I

Branch: CSE, ISE, ML, IOT, DS, BT and CSB

Duration: 3 hrs.

Course Code: 22MA1BSMCS

Max Marks: 100

Course: Mathematical Foundation for Computer Science Stream-1

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Derive an expression to find the angle between radius vector and tangent to the polar curve $r = f(\theta)$.	CO1	PO1	6
	b)	Find the pedal equation for the polar curve $r^m = a^m(\cos m\theta + \sin m\theta)$.	CO1	PO1	7
	c)	Find the radius of curvature of the Folium $x^3 + y^3 = 3axy$ at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$.	CO1	PO1	7
UNIT - II					
2	a)	If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.	CO1	PO1	6
	b)	If $u = x^2 + 3y^2 - z^3$, $v = 4x^2yz$, $w = 2z^2 - xy$, evaluate $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at $(1, -1, 0)$.	CO1	PO1	7
	c)	Determine the Maclaurin series expansion of $\sqrt{1 + \sin 2x}$ up to the fourth degree.	CO1	PO1	7
OR					
3	a)	If $u = \log(x^3 + y^3 + z^3 - 3xyz)$ then prove that $u_x + u_y + u_z = \frac{3}{x+y+z}$ and hence show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$.	CO1	PO1	6
	b)	If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$ find $J\left(\frac{x,y,z}{r,\theta,\phi}\right)$.	CO1	PO1	7
	c)	Find the extreme values of the function $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$.	CO1	PO1	7
UNIT - III					
4	a)	Solve $\frac{dy}{dx} + y \tan x = y^3 \sec x$.	CO1	PO1	6
	b)	Solve $(xy^3 + y) dx + 2(x^2y^2 + x + y^4) dy = 0$.	CO1	PO1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2+\lambda} = 1$, where λ is the parameter.	CO2	PO1	7
UNIT - IV					
5	a)	Find the remainder when 7^{30} is divided by 15.	CO1	PO1	6
	b)	Apply Chinese Remainder theorem to solve the system of linear congruences $x \equiv 5 \pmod{3}$, $x \equiv 2 \pmod{5}$, $x \equiv 1 \pmod{11}$.	CO1	PO1	7
	c)	Solve the polynomial congruence $x^3 + 3x + 5 \equiv 0 \pmod{9}$.	CO1	PO1	7
OR					
6	a)	Solve the linear Diophantine equation $70x + 112y = 168$.	CO1	PO1	6
	b)	Apply Chinese Remainder theorem to solve the system of linear congruences $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, $x \equiv 2 \pmod{7}$.	CO1	PO1	7
	c)	Encode STOP using RSA algorithm with key $(2537, 13)$ by taking $p = 43$ and $q = 59$.	CO2	PO1	7
UNIT - V					
7	a)	Find the rank of the matrix $A = \begin{bmatrix} 2 & 1 & 3 & 5 \\ 4 & 2 & 1 & 3 \\ 8 & 4 & 7 & 13 \\ 8 & 4 & -3 & -1 \end{bmatrix}$.	CO1	PO1	6
	b)	Find the values of λ and μ for which the system $x + y + z = 6$, $x + 2y + 3z = 10$ and $x + 2y + \lambda z = \mu$ has (i) Unique solution, (ii) Infinitely many solutions, (iii) No solution.	CO1	PO1	7
	c)	Apply Gauss Seidel iterative method to find the approximate solution of the system of equations $x + 3y + 10z = 24$, $2x + 17y + 4z = 35$ and $28x + 4y - z = 32$. Perform three iterations.	CO1	PO1	7
