

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: CS,IS,ML,BT,DS,IOT,CSB

Course Code: 22MA1BSMCS / 23MA1BSMCS

Course: Mathematical Foundation for Computer Science Stream -1

Semester: I

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Find the pedal equation of the curve $r^m \cos(m\theta) = a^m$.	CO1	PO1	6
	b)	Find the angle of intersection of the curves $r = 3\cos(\theta)$ and $r = 1 + \cos(\theta)$.	CO1	PO1	7
	c)	Find the radius of curvature of the curve $x = a \ln(\sec t + \tan t)$ and $y = a \sec t$.	CO1	PO1	7
UNIT - II					
2	a)	If $\theta = t^n e^{-r^2/4t}$ then for what value of n will θ satisfy the equation $\frac{1}{r^2} \left[\frac{\partial}{\partial r} \left(r^2 \frac{\partial \theta}{\partial r} \right) \right] = \frac{\partial \theta}{\partial t}$?	CO1	PO1	6
	b)	Expand the function $f(x, y) = xy^2 + \cos xy$ in powers of $(x-1)$ and $(y - \pi/2)$ up to the second degree term.	CO1	PO1	7
	c)	Divide 120 into three parts so that the sum of their products taken two at a time shall be maximum.	CO1	PO1	7
OR					
3	a)	If $V = f(r, s, t)$ and $r = \frac{x}{y}, s = \frac{y}{z}, t = \frac{z}{x}$ then show that $x \frac{\partial V}{\partial x} + y \frac{\partial V}{\partial y} + z \frac{\partial V}{\partial z} = 0$.	CO1	PO1	6
	b)	Verify $JJ' = 1$ for the function $x = \sqrt{vw}, y = \sqrt{uw}, z = \sqrt{uv}$.	CO1	PO1	7
	c)	Apply Gradient descent method to approximate the minimum point of the function $f(x, y) = 3x^2 + y^2$ near the point $(1, 2)$. Perform two iterations.	CO1	PO1	7
UNIT - III					
4	a)	Solve: $y^2 y' - y^3 \tan x - \sin x \cos^2 x = 0$.	CO1	PO1	6

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Solve: $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$.	COI	POI	7
	c)	The population of a community is known to increase at a rate proportional to the number of people present at time t . An initial population p_0 has doubled in 5 years. Suppose it is known that the population of the community is 10,000 after 3 years. What will the population be in 10 years? How fast is the population growing at $t = 10$?	COI	POI	7
		UNIT - IV			
5	a)	Find the remainder when 72^{1001} is divisible by 31.	COI	POI	6
	b)	Find the least positive integer x which leaves a remainder 2 when divided by 3, remainder 3 when divided by 5 and remainder 2 when divided by 7.	COI	POI	7
	c)	Apply RSA algorithm to encrypt the text DB by choosing $p = 3$ and $q = 11$.	COI	POI	7
		OR			
6	a)	Solve $91x \equiv 119 \pmod{28}$.	COI	POI	6
	b)	A small clothing manufacturer produces two styles of sweaters: cardigan and pullover. She sells cardigans for Rs.31 each and pullovers for Rs.28 each. If her total revenue from a day's production is Rs.146, how many of each type might she manufacture in a day?	COI	POI	7
	c)	Solve the polynomial congruence $x^3 + 3x + 5 \equiv 0 \pmod{9}$.	COI	POI	7
		UNIT - V			
7	a)	Find the traffic flow in the net of one-way streets directions shown in the figure.	COI	POI	6
	b)		COI	POI	7
	c)	<p>Apply Gauss-Seidel iteration method to obtain an approximate solution of the system of equations $-x + 2y = 3$, $2x + y + 4z = 16$ and $4x + 2y + z = 11$ and by taking initial approximation as $(0,0,0)$. Perform three iterations.</p> <p>Apply Rayleigh's power method to find the dominant eigenvalue and the corresponding eigenvector of the matrix $\begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \\ -1 & 1 & 0 \end{bmatrix}$ by taking initial vector as $[1 \ 1 \ 1]^T$. Perform 4 iterations.</p>	COI	POI	7
