

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September 2024 Supplementary Examinations

Programme: B.E.

Branch: CS, IS, ML, BT, DS, IOT, CSB

Course Code: 22MA1BSMCS / 23MA1BSMCS

Course: Mathematical Foundation for Computer Science Stream -1

Semester: I

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Find the angle between the curves $r = a \log \theta$ and $r = \frac{a}{\log \theta}$.	CO1	PO1	6
	b)	Find the pedal equation of the polar curve $r^m = a^m(\cos m\theta + \sin m\theta)$.	CO1	PO1	7
	c)	Find the radius of curvature of the curve $x^2y = a(x^2 + y^2)$ at $(-2a, 2a)$.	CO1	PO1	7
UNIT - II					
2	a)	If $u = f(2x - 3y, 3y - 4z, 4z - 2x)$ prove that $(1/2)u_x + (1/3)u_y + (1/4)u_z = 0$.	CO1	PO1	6
	b)	If $x = r \sin(\theta)\cos(\phi)$, $y = r \sin(\theta)\sin(\phi)$ and $z = r \cos(\theta)$, find $\frac{\partial(x,y,z)}{\partial(r,\theta,\phi)}$.	CO1	PO1	7
	c)	Apply Gradient descent method to approximate the minimum point of the function $f(x, y) = 3x^2 + y^2$ near the given point $(6, 3)$. Perform two iterations.	CO1	PO1	7
OR					
3	a)	Find the total derivative $\frac{dz}{dt}$ of $z = xy^2 + yx^2$ where $x = at$ and $y = 2at$.	CO1	PO1	6
	b)	Find extreme values of the function $f(x, y) = x^3 + y^3 - 3x - 12y + 20$.	CO1	PO1	7
	c)	Expand $e^{ax} \sin(by)$ in Maclaurin's series up to second degree term.	CO1	PO1	7
UNIT - III					
4	a)	Solve: $(8xy - 9y^2)dx + 2(x^2 - 3xy)dy = 0$.	CO1	PO1	6
	b)	Solve: $x^3 \frac{dy}{dx} - x^2y = -y^4 \cos x$.	CO1	PO1	7
	c)	Find the orthogonal trajectories of the family of curves $r = a(1 + \sin \theta)$.	CO1	PO1	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV					
5	a)	Prove that $8^{86} - 6$ is divisible by 29 by Fermat's Little theorem.	CO1	PO1	6
	b)	Solve $18x \equiv 30 \pmod{42}$.	CO1	PO1	7
	c)	A boy buys large shirts for Rs.18 each and small shirts for Rs.11 each. The total amount paid is Rs.1188. What is the total number of shirts, the boy has bought?	CO1	PO1	7
OR					
6	a)	Find the least positive integer x which leaves a remainder 2 when divided by 3, remainder 3 when divided by 5 and remainder 2 when divided by 7.	CO1	PO1	6
	b)	Solve the polynomial congruence $x^3 + 3x + 5 \equiv 0 \pmod{9}$.	CO1	PO1	7
	c)	Apply RSA algorithm to encrypt the text DB by choosing $p = 3$ and $q = 11$.	CO1	PO1	7
UNIT - V					
7	a)	Show that the system of equations $2x + 5y + 7z = 52$, $2x + y - z = 0$ and $x + y + z = 9$ is consistent and hence solve.	CO1	PO1	6
	b)	Apply Gauss-Seidel iterative method to obtain an approximate solution of the system of equations $x + y + 54z = 110$, $27x + 6y - z = 85$ and $6x + 15y + 2z = 72$. Carry out three iterations.	CO1	PO1	7
	c)	Apply Rayleigh's power method to find the largest eigenvalue and the corresponding eigenvector of the matrix $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ by taking $[1 \ 1 \ 1]^T$ as the initial eigenvector. Carry out four iterations.	CO1	PO1	7
