

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Branch: All Branches Except CSE Stream

Course Code: 22MA1BSMCV / 22MA1BSMES / 22MA1BSMME

Course: Mathematical foundation for Civil Engineering -1/

Mathematical foundation for Electrical Stream-1/

Mathematical foundation for Mechanical Engineering Stream-1

Semester: I

Duration: 3 hrs.

Max Marks: 100

Date: 12.05.2023

Instructions: Answer any FIVE full questions, choosing one full question from each unit.

UNIT - I

1 a) If ϕ be the angle between radius vector and the tangent at any point of the curve $r = f(\theta)$, then prove that $\tan(\phi) = r \frac{d\theta}{dr}$. 6

b) Show that the radius of curvature of the curve $r^n = a^n \sin(n\theta)$ is $\frac{a^n}{(n+1)r^{n-1}}$. 7

c) Find the pedal equation of the curve $\frac{2a}{r} = 1 - \cos\theta$. 7

UNIT - II

2 a) Expand $e^y \log_e(1+x)$ in powers of x and y up to third degree terms. 6

b) Find the value of n so that $v = r^n(3 \cos^2 \theta - 1)$ satisfies the equation $\frac{\partial}{\partial r} \left(r^2 \frac{\partial v}{\partial r} \right) + \frac{1}{\sin(\theta)} \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial v}{\partial \theta} \right) = 0$. 7

c) Find the extremum of the function $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$. 7

OR

3 a) If $u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$, show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$. 6

b) Expand the function $f(x, y) = \tan^{-1}\left(\frac{y}{x}\right)$ in the powers of $(x-1)$ and $(y-1)$ up to second degree terms. 7

c) If $x = e^u \cos(v)$, $y = e^u \sin(v)$ then verify that $J \cdot J' = 1$ where $J = \frac{\partial(x,y)}{\partial(u,v)}$ and $J' = \frac{\partial(u,v)}{\partial(x,y)}$. 7

UNIT - III

4 a) Solve: $\left[y \left(1 + \frac{1}{x} \right) + \cos(y) \right] dx + [x + \log x - x \sin(y)] dy = 0$. 6

b) Solve: $y^4 dx = (x^{-3/4} - y^3 x) dy$. 7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

c) For the family of curves $x - y + 1 = ae^{-y}$, where 'a' is the parameter, find the orthogonal trajectory which passes through the point (0,1). 7

UNIT - IV

5 a) Solve: $y'' + 4y = \sin(3x) + \cos(2x)$. 6

b) Solve: $x^2y'' - 4xy' + 6y = 4x - 6$. 7

c) Apply the method of variation of parameters to solve $(D^2 + 3D + 2)y = e^{e^x}$. 7

OR

6 a) Solve: $D(D + 1)^2y = 12e^{-x} + 3^x$. 6

b) Solve the initial value problem $(D^2 + 4D + 4)y = x^2 + 2x$ given $y(0) = 0$, $y'(0) = 1$. 7

c) Solve: $(1 + x)^2y'' + (1 + x)y' + y = \sin[2 \log(1 + x)]$. 7

UNIT - V

7 a) Investigate the values of λ and μ such that $x + 3y + 5z = 9$, $x - y + 2z = 1$ and $2x + 2y + \lambda z = \mu$ has i) Unique solution ii) infinitely many solution iii) No solution. 6

b) Apply Gauss-Seidel iteration method to solve the system of equations $x + y + 5z = 110$, $27x + 6y - z = 85$; $6x + 15y + 2z = 72$. Perform three iterations. 7

c) Apply Rayleigh power method to approximate a dominant eigenvalue and corresponding eigenvector of the matrix $A = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}$. Perform five iterations. 7
